ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Система автоматизированная информационно-измерительная коммерческого учета электрической энергии и мощности АИИС КУЭ «Южноуральской ГРЭС-2»

Назначение средства измерений

Система автоматизированная информационно-измерительная коммерческого учета электрической энергии и мощности АИИС КУЭ «Южноуральской ГРЭС-2» (в дальнейшем – АИИС КУЭ «Южноуральской ГРЭС-2») предназначена для измерений, коммерческого (технического) учета электрической энергии (мощности), а также автоматизированного сбора, накопления, обработки, хранения и отображения информации об энергоснабжении.

Описание средства измерений

АИИС КУЭ «Южноуральской ГРЭС-2» представляет собой информационноизмерительную систему, состоящую из трех функциональных уровней.

Первый уровень - измерительно-информационный комплекс (ИИК) выполняет функцию автоматического проведения измерений в точке измерений. В состав ИИК входят измерительные трансформаторы тока (ТТ), соответствующие ГОСТ 7746-2001 и трансформаторы напряжения (ТН), соответствующие ГОСТ 1983-2001, вторичные измерительные цепи, счетчики электрической энергии, изготовленные по ГОСТ Р 52323-2005 (в части активной электроэнергии), по ГОСТ Р 52425-2005 (в части реактивной электроэнергии).

Второй уровень - информационно-вычислительный комплекс электроустановки (ИВ-КЭ) выполняет функцию консолидации информации по данной электроустановке либо группе электроустановок. В состав ИВКЭ входят устройства сбора и передачи данных (УСПД) или промконтроллер, обеспечивающий интерфейс доступа к ИИК, технические средства приёма-передачи данных (каналообразующая аппаратура, модемы). УСПД предназначены для сбора, накопления, обработки, хранения и отображения первичных данных об электроэнергии и мощности со счетчиков, а также для передачи накопленных данных по каналам связи на уровень ИВК (АРМ).

Третий уровень - информационно-вычислительный комплекс (ИВК). В состав ИВК входят: промконтроллер (компьютер в промышленном исполнении, далее - сервер); технические средства приёма-передачи данных (каналообразующая аппаратура); технические средства для организации функционирования локальной вычислительной сети и разграничения прав доступа к информации; технические средства обеспечения безопасности локальных вычислительных сетей. ИВК предназначен для автоматизированного сбора и хранения результатов измерений, автоматической диагностики состояния средств измерений, подготовки отчетов и передачи их различным пользователям.

АИИС КУЭ «Южноуральской ГРЭС-2» обеспечивает измерение следующих основных параметров энергопотребления:

- активной (реактивной) электроэнергии за определенные интервалы времени по каналам учета, группам каналов учета и объекту в целом, с учетом временных (тарифных) зон, включая прием и отдачу электроэнергии;
- средних значений активной (реактивной) мощности за определенные интервалы времени по каналам учета, группам каналов учета и объекту в целом;
- календарного времени и интервалов времени.

Измеренные значения активной и реактивной электроэнергии в автоматическом режиме фиксируется в базе данных УСПД и ИВК.

Кроме параметров энергопотребления (измерительной информации) в счетчиках и сервере сбора данных может храниться служебная информация: параметры качества элек-

троэнергии в точке учета, регистрация различных событий, данные о корректировках параметров, данные о работоспособности устройств, перерывы питания и другая информация. Эта информация может по запросу пользователя передаваться на APM.

В АИИС КУЭ «Южноуральской ГРЭС-2» измерения и передача данных на верхний уровень происходит следующим образом. Аналоговые сигналы переменного тока с выходов измерительных трансформаторов (для счетчиков трансформаторного включения) поступают на входы счетчиков электроэнергии, которые преобразуют значения входных сигналов в цифровой код. Счетчики производят измерения мгновенных и действующих (среднеквадратических) значений напряжения (U) и тока (I) и рассчитывают активную мощность $(P=U\cdot I\cdot \cos\phi)$ и полную мощность $(S=U\cdot I)$. Реактивная мощность (Q) рассчитывается в счетчике по алгоритму Q=(S2-P2)0,5. Средние значения активной мощности рассчитываются путем интегрирования текущих значений Р на 30-минутных интервалах времени. По запросу или в автоматическом режиме измерительная информация направляется в устройство сбора и передачи данных (УСПД). В УСПД происходят косвенные измерения электрической энергии при помощи программного обеспечения, установленного на УСПД, далее информация поступает на сервер ИВК, где происходит накопление и отображение собранной информации при помощи АРМов. Полный перечень информации, передаваемой на АРМ, определяется техническими характеристиками многофункциональных электросчетчиков, УСПД, сервера сбора данных ИВК и уровнем доступа АРМа к базе данных на сервере. Для передачи данных, несущих информацию об измеряемой величине от одного компонента к другому, используются проводные линии связи, каналы сотовой связи, телефонные линии связи.

АИИС КУЭ «Южноуральской ГРЭС-2» имеет систему обеспечения единого времени (СОЕВ), которая включает в себя устройство синхронизации времени на GPS-приемнике, входящие в состав УСПД, встроенные часы сервера АИИС КУЭ, УСПД и счетчиков. Время часов УСПД синхронизировано с сигналами точного времени от GPS-приемника. Погрешность синхронизации не более 0,1 с. Сличение времени часов сервера БД с временем часов УСПД осуществляется каждый час. Коррекция времени часов сервера выполняется один раз в сутки при достижении допустимого расхождения времени часов сервера и УСПД на ±3 с. Сличение времени часов счетчиков и УСПД осуществляется при каждом сеансе связи, коррекция времени часов счетчиков происходит при расхождении со временем часов УСПД на ±3 с. Погрешность СОЕВ не превышает ±5 с.

Журналы событий счетчика электроэнергии и УСПД отражают: время (дата, часы, минуты) коррекции часов указанных устройств и расхождение времени в секундах корректируемого и корректирующего устройств.

Для защиты метрологических характеристик системы от несанкционированных изменений (корректировок) предусмотрена аппаратная блокировка, пломбирование средств измерений и учета, кроссовых и клеммных коробок, а также многоуровневый доступ к текущим данным и параметрам настройки системы (электронные ключи, индивидуальные пароли, коды оператора и программные средства для защиты файлов и баз данных).

Основные функции и эксплуатационные характеристики АИИС КУЭ «Южноуральской ГРЭС-2» соответствуют техническим требованиям ОАО «АТС» к АИИС КУЭ. Параметры надежности средств измерений АИИС КУЭ «Южноуральской ГРЭС-2» трансформаторов напряжения и тока, счетчиков электроэнергии соответствуют техническим требованиям к АИИС КУЭ субъекта ОРЭ. Для непосредственного подключения к отдельным счетчикам (в случае, например, повреждения линии связи) предусматривается использование переносного компьютера типа NoteBook с последующей передачей данных на АРМ.

В АИИС КУЭ «Южноуральской ГРЭС-2» обеспечена возможность автономного съема информации со счетчиков. Глубина хранения информации в системе не менее 3,5 года. При прерывании питания все данные и параметры хранятся в энергонезависимой памяти.

Все основные технические компоненты, используемые АИИС КУЭ «Южноуральской ГРЭС-2», являются средствами измерений и зарегистрированы в Государственном реестре. Устройства связи, модемы различных типов, пульты оператора, дополнительные средства вычислительной техники (персональные компьютеры) отнесены к вспомогательным техни-

ческим компонентам и выполняют только функции передачи и отображения данных, получаемых от основных технических компонентов.

Программное обеспечение

В АИИС КУЭ используется программно-технический комплекс (ПТК) «ЭКОМ», представляющий собой совокупность технических устройств (аппаратной части ПТК) и программного комплекса (ПК) «Энергосфера» в состав которого входит специализированное ПО. ПК «Энергосфера» обеспечивает защиту программного обеспечения и измерительной информации паролями в соответствии с правами доступа. Средством защиты данных, передаваемых из УСПД ИВКЭ в ИВК по интерфейсу Ethernet, является кодирование данных, обеспечиваемое программными средствами ПК «Энергосфера».

Идентификационные данные программного обеспечения, установленного в АИИС КУЭ «Южноуральской ГРЭС-2», приведены в таблице 1.

Таблица 1 - Идентификационные данные ПО «Энергосфера»

Наимено-	Идентификационное		<u> Цифровой идентификатор</u>	Алгоритм вы-
вание про-	наименование про-	(идентифика-	программного обеспече-	числения циф-
граммного		ционный но-	ния (контрольная сумма	рового иден-
обеспече-	РИН	мер) программ-	исполняемого кода)	тификатора
ния		ного обеспече-		программного
		ния		обеспечения
	Консоль администратора, AdCenter.exe	6.8	cabcd76559ee721eacd4b b8efa383ebc	MD5
	Редактор структуры объектов учёта и расчётных схем, AdmTool.exe	6.8	fdf23fc793ebf9775bcf4c 9457854443	MD5
сфера»	Автоматический контроль системы, AlarmSvc.exe	6.8	3cbd8f28332767ba51ebd 35fc02f9b9e	MD5
ПК «Энергосфера»	Настройка параметров УСПД ЭКОМ, config.exe	6.8	8d8e7bda57a99354b860d 8b33290fcf0	MD5
ПК	Автоматизированное рабочее место, ControlAge.exe	6.8	f9693889541c85f691705 ae1216c3cc9	MD5
	Центр экспор- та/импорта макетных данных, expimp.exe	6.8	82cba82ddfac35fbac5032 fbdc9f298c	MD5
	Сервер опроса, Pso.exe	6.8	ad669e99518701644cec0 b6faf5ef4e2	MD5

Защита программного обеспечения от непреднамеренных и преднамеренных изменений соответствует уровню «С».

Метрологические и технические характеристики

Таблица 2– Метрологические и технические характеристики

Параметр	значение
Пределы допускаемых значений относительной погрешности	Значения пределов до-
измерения электрической энергии.	пускаемых погрешно-
	стей приведены в таб-
	лице 3

Параметры питающей сети переменного тока:	
Напряжение, В	220± 22
частота, Гц	50 ± 1
Температурный диапазон окружающей среды для:	
- счетчиков электрической энергии, °С	от -30 до +40
- трансформаторов тока и напряжения, °С	от -30 до +40
Индукция внешнего магнитного поля в местах установки счет-	
чиков, не более, мТл	0,5
Мощность, потребляемая вторичной нагрузкой, подключаемой к	
ТТ и ТН, % от номинального значения	25-100
Потери напряжения в линии от ТН к счетчику, не более, %	0,25
Первичные номинальные напряжения, кВ	220; 6; 20;
Первичные номинальные токи, кА	17; 3; 2; 1,5;
Номинальное вторичное напряжение, В	100
Номинальный вторичный ток, А	1, 5
Количество точек учета, шт.	78
Интервал задания границ тарифных зон, минут	30
Пределы допускаемой абсолютной погрешности часов, не более,	±5
секунд в сутки	13
Средний срок службы системы, лет	15

Таблица 3 - Пределы допускаемых относительных погрешностей ИК при измерении электрической энергии для рабочих условий эксплуатации, d_3 , %.

№ ИК	Состав ИИК	cos φ (sin φ)	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{c} \delta_{5\%I} \\ I_{5\%} \leq I < I_{20\%} \end{array}$	$\begin{array}{c} \delta_{20\%I} \\ I_{20\%} \leq I < I_{100\%} \end{array}$	$\begin{array}{c} \delta_{100\%I} \\ I_{100\%} \leq I \leq I_{120\%} \end{array}$
1	2	3	4	5	6	7
	ТТ класс точности 0,2S	1	±1,3	±1,0	±0,9	±0,9
	ТН класс точности 0,2	0,8 (инд.)	±1,8	±1,6	±1,5	±1,5
1 - 6,	Счетчик класс точности	0,5 (инд.)	±2,4	±1,8	±1,6	±1,6
9, 10,	0,2S	0,8 (0,60)	±3,7	±3,5	±3,3	±3,3
12	(активная энергия) Счетчик класс точности 0,5 (реактивная энергия)	0,5 (0,87)	±2,6	±2,5	±2,3	±2,3
	ТТ класс точности 0,5S	1	±2,0	±1,3	±1,2	±1,2
	ТН класс точности 0,5	0,8 (инд.)	±3,2	±2,1	±1,8	±1,8
7, 8,	Счетчик класс точности	0,5 (инд.)	±5,6	±3,2	±2,5	±2,5
11,	0,28	0,8 (0,60)	±5,4	±4,1	±3,7	±3,7
13	(активная энергия) Счетчик класс точности 0,5 (реактивная энергия)	0,5 (0,87)	±3,4	±2,8	±2,5	±2,5

Пределы допускаемой относительной погрешности при измерении средней получасовой мощности для рабочих условий эксплуатации на интервалах усреднения получасовой мощности, на которых не производится корректировка часов (\boldsymbol{d}_p), рассчитываются по следующей формуле (на основании считанных по цифровому интерфейсу показаний счетчика о средней получасовой мощности, хранящейся в счетчике в виде профиля нагрузки в импульсах):

$$d_p = \pm \sqrt{d^2 + \left(\frac{KK_e \cdot 100\%}{1000PT_{cp}}\right)^2}$$
, где

 d_p - пределы допускаемой относительной погрешности при измерении средней получасовой мощности и энергии, %;

 d_{3} - пределы допускаемой относительной погрешности системы из табл.3, %;

K — масштабный коэффициент, равный общему коэффициенту трансформации трансформаторов тока и напряжения;

Ke- внутренняя константа счетчика (величина эквивалентная 1 импульсу, выраженному в $B\tau^{\bullet}$ ч);

Тср - интервал усреднения мощности, выраженный в часах;

P - величина измеренной средней мощности с помощью системы на данном интервале усреднения, выраженная в кВт.

Пределы допускаемой дополнительной относительной погрешности измерения средней мощности системы на интервалах усреднения мощности, на которых производится корректировка времени, рассчитываются по следующей формуле:

$$d_{p.\kappa opp.} = \frac{\Delta t}{3600T_{cp}} \cdot 100\% ,$$

где Δt - величина произведенной корректировки значения текущего времени в счетчиках (в секундах);

Тср - величина интервала усреднения мощности (в часах).

Знак утверждения типа

Знак утверждения типа наносится на титульных листах эксплуатационной документации системы типографским способом.

Комплектность средства измерений

В комплект поставки входят:

- средства измерения, приведенные, в таблице 4;
- устройство сбора и передачи данных УСПД ЭКОМ-3000 (зав. №06123985), Госреестр № 17049-09;
- документация и ПО, представленные в таблице 5.

Таблица 4 – Состав ИИК АИИС КУЭ

Канал учета		C	Средства измерений
Номер		Вид СИ,	Тип СИ; коэффициент трансформа-
ИК	Наименование фидера	№ Госреестра	ции; Класс точности, заводской но-
YIK			мер СИ
1	2	3	4
1		Электросчетчик	СЭТ-4ТМ.03М; Іном=1 А; КТ 0,2S;
		36697-12	№ 0806120509
	ВЛ 220 кВ Южно-	TT 29687-05	OSKF; 3000/1 A Кл. т. 0,2S; №
	уральская ГРЭС -		488187; 488189; 488190
	Южноуральская	TH 48527-11	ОТСГ; 220000/√3/100/√3 кВ Кл. т.
	ГРЭС-2 № 1		0,2; № 720093905; 720093903;
			720093904; 720093902; 720093901;
			720093906

		T	
2		Электросчетчик 36697-12	CЭT-4TM.03M; IHOM=1 A; KT 0,2S; №0806120371
	ВЛ 220 кВ Южно- уральская ГРЭС -	TT 29687-05	OSKF; 3000/1 А Кл. т. 0,2S; №488193; 488183; 488184
	Южноуральская	TH 48527-11	ОТСF; 220000/√3/100/√3 кВ Кл. т.
	ГРЭС-2 № 2	111 40327-11	$0.2; N_{\Omega} 720093905; 720093903;$
	1100200		720093904; 720093902; 720093901;
			720093906
3		Электросчетчик	СЭТ-4ТМ.03М; Іном=1 А; КТ 0,2S;
	DH 220 D 10	36697-12	№0806120502
	ВЛ 220 кВ Южно-	TT 29687-05	OSKF; 3000/1 А Кл. т. 0,2S; №488200;
	уральская ГРЭС-2 - Шагол 2 с отпайкой	TH 48527-11	488199; 488195 ОТСF; 220000/√3/100/√3 кВ Кл. т.
	на ПС Исаково	1П 46327-11	0,2; № 720093905; 720093903;
	на 11С Исаково		720093904; 720093902; 720093901;
			720093904, 720093902, 720093901,
4		Электросчетчик	СЭТ-4ТМ.03М; Iном=1 A; КТ 0,2S;
		36697-12	№0806120481
	ВЛ 220 кВ Южно-	TT 29687-05	OSKF; 3000/1 А Кл. т. 0,2S; №488196;
	уральская ГРЭС-2 -		488197; 488198
	КС-19	TH 48527-11	ОТСГ; 220000/√3/100/√3 кВ Кл. т.
			0,2; № 720093905; 720093903;
			720093904; 720093902; 720093901;
)	720093906
5		Электросчетчик 36697-12	СЭТ-4ТМ.03М; Іном=1 A; КТ 0,2S; №0806120495
		TT 29687-05	OSKF; 1500/1 A Кл. т. 0,2S; №488192;
	Трансформатор блоч-	11 27007-03	488191; 488194
	ный 10ВАТ10	TH 48527-11	ОТСГ; 220000/√3/100/√3 кВ Кл. т.
			0,2; № 720093905; 720093903;
			720093904; 720093902; 720093901;
			720093906
6		Электросчетчик	СЭТ-4ТМ.03М; Iном=1 A; КТ 0,2S;
		36697-12	№0806120399
	Обходной выключа-	TT 29687-05	OCKF; 3000/1 A Кл. т. 0,2S; №488202; 488201; 488206
	тель 00ADA04GS001	TH 48527-11	ОТСF; 220000/√3/100/√3 кВ Кл. т.
		111 10527 11	0,2; № 720093905; 720093903;
			720093904; 720093902; 720093901;
			720093906
7		Электросчетчик	СЭТ-4ТМ.03М; Іном=5 А; КТ 0,2S;
		36697-12	№0806121454
	Ввод рабочего пита-	TT 37544-08	ТШЛ-СЭЩ-10; 2000/5 А Кл. т. 0,5S;
	ния на секцию 10ВВА	THE 05050 12	№00719-11; 00704-11; 00711-11
		TH 35956-12	ЗНОЛ-СЭЩ-6; 6000/√3/100/√3 Кл. т.
8		Эпактроонотин	0,5; № 02252-11, 02251-11, 02274-11
0		Электросчетчик 36697-12	СЭТ-4ТМ.03М; Іном=5 A; КТ 0,2S; №0807120452
	Ввод рабочего пита-	TT 37544-08	ТШЛ-СЭЩ-10; 2000/5 A Кл. т. 0,5S;
	ния на секцию 10ВВВ	11 3/377-00	Nº00713-11; 00708-11; 00712-11
	The two tendino robbb	TH 35956-12	ЗНОЛ-СЭЩ-6; 6000/√3/100/√3 Кл. т.
			0,5; № 02260-11, 02258-11, 02259-11
	- I	1	, , , , , , , , , , , , , , , , , , , ,

9		Электросчетчик 36697-12	СЭТ-4ТМ.03М; Іном=1 A; КТ 0,2S; №0806120530
	Генератор 10МКА	TT 43946-10	AON-F; 17000/1 A; Кл. т. 0,2S № 464030101; 464030102; 464030103
		TH 43945-10	UKM; 20000/√3/100/√3; кл. т. 0,2; №459570103; 459570105; 459570107
10		Электросчетчик 36697-12	СЭТ-4ТМ.03М; Іном=1 A; КТ 0,2S; №0806120488
	TCH 10BBT10	TT 35406-12	JR 0,5; 1500/1 A; Кл. т. 0,2S №3/11/0155; 3/11/0156; 3/11/0157
		TH 43945-10	UKM; 20000/√3/100/√3; кл. т. 0,2; №459570103; 459570105; 459570107
11		Электросчетчик 36697-12	СЭТ-4ТМ.03М; Іном=5 A; КТ 0,2S; №0807120485
	Ввод рабочего питания на секцию 00BBG	TT 37544-08	ТШЛ-СЭЩ-10; 2000/5 А Кл. т. 0,5S; №00856-11; 00835-11; 00850-11
		TH 35956-12	ЗНОЛ-СЭЩ-6; 6000/√3/100/√3 Кл. т. 0,5; № 02162-11; 02069-11; 01985-11
12		Электросчетчик 36697-12	СЭТ-4ТМ.03М; Іном=1 A; КТ 0,2S; №0806120406
	Трансформатор ре-	TT 29687-05	OSKF; 1500/1 А Кл. т. 0,2S; №488185; 488186; 488188
	зервный 00BCS10	TH 48527-11	ОТСF; 220000/√3/100/√3 кВ Кл. т. 0,2; № 720093905; 720093903; 720093904; 720093902; 720093901; 720093906
13		Электросчетчик 36697-12	СЭТ-4ТМ.03М; Іном=5 A; КТ 0,2S; №0807120382
	Ввод рабочего питания на секцию 00ВВН	TT 37544-08	ТШЛ-СЭЩ-10; 2000/5 А Кл. т. 0,5S; №00836-11; 00838-11; 00837-11
		TH 35956-12	ЗНОЛ-СЭЩ-6; 6000/√3/100/√3 Кл. т. 0,5; № 02072-11; 01986-11; 02070-11

Таблица 5 Документация и ПО, поставляемые в комплекте с АИИС КУЭ

Наименование программного обеспечения, вспомога-	Необходимое количество для
тельного оборудования и документации	АИИС КУЭ «Южноуральской
	ГРЭС-2»
Программный пакет «Энергосфера». Версия 6.8	Один
Формуляр (122-17А – АИИСКУЭ- ФО)	1(один) экземпляр
Методика поверки (122-17А – АИИСКУЭ- МП)	1(один) экземпляр
Эксплуатационная документация (122-17А – АИИСКУЭ-	1(один) экземпляр
ЭД)	

Поверка

осуществляется по документу 122-17А – АИИСКУЭ- МП «Система автоматизированная информационно-измерительная коммерческого учета электрической энергии и мощности АИ-ИС КУЭ «Южноуральской ГРЭС-2». Методика поверки», утвержденному ГЦИ СИ ФГУП «ВНИИМС» в июне 2013г.

Перечень основных средств поверки:

- средства поверки измерительных трансформаторов напряжения по МИ 2845-2003, МИ 2925-2005 и/или по Γ OCT 8.216-2011;
- средства поверки измерительных трансформаторов тока по ГОСТ 8.217-2003;

- средства поверки счетчиков электрической энергии многофункциональных СЭТ-4ТМ.03М в соответствии с методикой поверки «Счетчик электрической энергии многофункциональный СЭТ-4ТМ.03М, СЭТ-4ТМ.02М. Методика поверки» ИЛГШ.411152.145 РЭ1, согласованной с руководителем ГЦИ СИ ФГУ «Нижегородский ЦСМ» 20.11.2007 г.;
- средства поверки устройств сбора и передачи данных «ЭКОМ-3000» в соответствии с методикой поверки «Устройства сбора и передачи данных ЭКОМ-3000. ПБКМ.421459.003 МП», утвержденной ФГУП «ВНИИМС» в мае 2009 г.;
- радиочасы «МИР РЧ-01», пределы допускаемой погрешности привязки переднего фронта выходного импульса к шкале координированного времени UTC, \pm 1мкс, № Госреестра 27008-04.

Сведения о методиках (методах) измерений

Метод измерений изложен в документе «Методика измерений электрической энергии и мощности с использованием АИИС КУЭ «Южноуральской ГРЭС-2» на оптовом рынке электороэнергии» 122-17А – АИИСКУЭ-МИ.

Нормативные документы, устанавливающие требования к «Системе автоматизированной информационно-измерительной коммерческого учета электрической энергии и мощности АИИС КУЭ «Южноуральской ГРЭС-2»

- 1. ГОСТ 22261-94 «Средства измерений электрических и магнитных величин. Общие технические условия».
- 2. ГОСТ 8.596-2002 «Государственная система обеспечения единства измерений. Метрологическое обеспечение измерительных систем. Основные положения».
- 3. ГОСТ Р 52323-05 (МЭК 62053-22:2003) «Национальный стандарт Российской Федерации. Аппаратура для измерения электрической энергии переменного тока. Частные требования. Часть 22. Статистические счетчики активной энергии классов точности 0,2S и 0,5S».
- 4. ГОСТ Р 52425-05 (МЭК 62053-23:2003) «Национальный стандарт Российской Федерации. Аппаратура для измерения электрической энергии переменного тока. Частные требования. Часть 23. Статистические счетчики реактивной энергии».
- 5. ГОСТ 7746-2001 «Трансформаторы тока. Общие технические условия».
- 6. ГОСТ 1983-2001 «Трансформаторы напряжения. Общие технические условия».

Рекомендации по областям применения в сфере государственного регулирования обеспечения единства измерений

осуществление торговли и товарообменных операций.

Изготовитель

ОАО «Южный инженерный центр энергетики»

Адрес: 350058, г. Краснодар, ул. Старокубанская, 116

Испытательный центр

ГЦИ СИ ФГУП «ВНИИМС», аттестат аккредитации 30004-08 от 27.06.2008г. 119361, Москва, ул. Озерная, 46. Тел. 781-86-03; e-mail: dept208@vniims.ru;

Заместитель Руководителя Федерального агентства по техническому регулированию и метрологии

Ф.В. Булыгин

М.п. «____» _____ 2013 г.