ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Система автоматизированная информационно-измерительная коммерческого учета электроэнергии (АИИС КУЭ) ПС 500/220 кВ «Пыть-Ях» с Изменением № 1

Назначение средства измерений

Настоящее описание типа системы автоматизированной информационно-измерительной коммерческого учета электроэнергии (АИИС КУЭ) ПС 500/220 кВ «Пыть-Ях» с Изменением № 1, является обязательным дополнением к описанию типа системы автоматизированной информационно-измерительной коммерческого учета электроэнергии (АИИС КУЭ) ПС 500/220 кВ «Пыть-Ях», свидетельство об утверждении типа RU.E.34.004.А № 52278 от 16.09.2013 г., регистрационный № 54843-13, и включает в себя описание дополнительных измерительных каналов, соответствующих точкам измерений № 4 и 5.

Система автоматизированная информационно-измерительная коммерческого учета электроэнергии (АИИС КУЭ) ПС 500/220 кВ «Пыть-Ях» с Изменением № 1 (далее - АИИС КУЭ) предназначена для измерения активной и реактивной энергии, а также для автоматизированного сбора, обработки, хранения, отображения и передачи информации.

Описание средства измерений

АИИС КУЭ представляет собой многофункциональную трехуровневую автоматизированную систему с централизованным управлением и распределённой функцией измерения.

АИИС КУЭ включает в себя следующие уровни:

1-й уровень состоит из измерительных трансформаторов тока (далее - TT) класса точности 0,5S по ГОСТ 7746-2001, измерительных трансформаторов напряжения (далее - TH) класса точности 0,2 по ГОСТ 1983-2001 и счетчиков активной и реактивной электроэнергии типа A1800 класса точности 0,2S по ГОСТ Р 52323-05 в части активной электроэнергии и 0,5 по ГОСТ Р 52425-05 в части реактивной электроэнергии, вторичных измерительных цепей и технических средств приема-передачи данных.

Счетчик электрической энергии обеспечен энергонезависимой памятью для хранения профиля нагрузки с получасовым интервалом на глубину не менее 35 суток, данных по активной и реактивной электроэнергии с нарастающим итогом за прошедший месяц, а так же запрограммированных параметров.

2-й уровень – информационно-вычислительный комплекс электроустановки (далее - ИВКЭ), созданный на базе устройства сбора и передачи данных (далее - УСПД), устройства синхронизации времени и коммутационного оборудования.

УСПД типа RTU-325 обеспечивает сбор данных со счетчика, расчет (с учетом коэффициентов трансформации TT и TH) и архивирование результатов измерений электрической энергии в энергонезависимой памяти с привязкой ко времени, передачу этой информации в информационно-вычислительный комплекс (далее – ИВК). Полученная информация накапливается в энергонезависимой памяти УСПД. Расчетное значение глубины хранения архивов составляет не менее 35 суток. Точное значение глубины хранения информации определяется при конфигурировании УСПД.

- 3-й уровень ИВК обеспечивает выполнение следующих функций:
 - сбор информации от ИВКЭ (результаты измерений, журнал событий);
 - обработку данных и их архивирование;
- хранение информации в базах данных серверов ОАО «Федеральная Сетевая Компания Единой Энергетической Системы» (ОАО «ФСК ЕЭС») не менее 3,5 лет;

- доступ к информации и ее передачу в организации-участники оптового рынка электроэнергии (далее – OPЭ).

ИВК состоит из центра сбора и обработки данных (далее – ЦСОД) филиала ОАО «ФСК ЕЭС» - МЭС Западной Сибири и комплекса измерительно-вычислительного АИИС КУЭ ЕНЭС (Метроскоп) (далее – ИВК АИИС КУЭ ЕНЭС (Метроскоп)), а также устройств синхронизации времени УССВ-35HVS, аппаратуры приема-передачи данных и технических средств для организации локальной вычислительной сети (далее - ЛВС), разграничения прав доступа к информации. В ЦСОД филиала ОАО «ФСК ЕЭС» - МЭС Западной Сибири используется программное обеспечение (далее – ПО) «АльфаЦЕНТР», а в ИВК АИИС КУЭ ЕНЭС (Метроскоп) — специализированное программное обеспечение Автоматизированная информационно-измерительная система коммерческого учета электроэнергии (АИИС КЭ) ЕНЭС (Метроскоп) (далее – СПО «Метроскоп»).

K серверам ИВК подключен коммутатор Ethernet. Также к коммутатору подключено автоматизированное рабочее место (далее – APM) персонала.

Для работы с АИИС КУЭ на уровне подстанции предусматривается организация АРМ подстанции.

Измерительный канал (далее – ИК) АИИС КУЭ включает в себя 1-й, 2-й и 3-й уровни АИИС КУЭ.

напряжения преобразуются Первичные фазные токи И измерительными трансформаторами в аналоговые сигналы низкого уровня, которые по проводным линиям связи поступают на соответствующие входы электронного счетчика электрической энергии. Первичный ток в счетчиках измеряется с помощью измерительных трансформаторов тока, имеющих малую линейную и угловую погрешность в широком диапазоне измерений. В цепи трансформаторов тока установлены шунтирующие резисторы, сигналы с которых поступают на вход измерительной микросхемы. Измеряемое напряжение каждой фазы через высоколинейные резистивные делители подается непосредственно на измерительную микросхему. Измерительная микросхема осуществляет выборки входных сигналов токов и напряжений по каждой фазе, используя встроенные аналого-цифровые преобразователи, и выполняет различные вычисления для получения всех необходимых величин. С выходов измерительной микросхемы на микроконтроллер поступают интегрированные по времени сигналы активной и реактивной энергии. Микроконтроллер осуществляет дальнейшую обработку полученной информации и накопление данных в энергонезависимой памяти, а также микроконтроллер осуществляет управление отображением информации на ЖКИ, выводом данных по энергии на выходные импульсные устройства и обменом по цифровому интерфейсу. Измерение максимальной мощности счетчик осуществляет по заданным видам энергии. Усреднение мощности происходит на интервалах, длительность которых задается программно.

УСПД автоматически проводит сбор результатов измерений и состояние средств измерений со счетчика электрической энергии (один раз в 30 минут) по проводным линиям связи (интерфейс RS-485).

Коммуникационный сервер опроса ИВК ЦСОД МЭС Западной Сибири автоматически опрашивает УСПД уровня ИВКЭ. Опрос УСПД выполняется по основному каналу связи - волоконно-оптической линии связи (далее - ВОЛС). При отказе основного канала связи опрос УСПД выполняется по резервному каналу связи, организованному на базе сотовой сети связи стандарта GSM.

В ИВК ЦСОД МЭС Западной Сибири информация о результатах измерений автоматически формируется в архивы и сохраняется на глубину не менее 3,5 лет по каждому параметру. Сформированные архивные файлы автоматически сохраняются на «жестком» диске.

В автоматическом режиме ИВК АИИС КУЭ ЕНЭС (Метроскоп) опрашивает ЦСОД филиала ОАО «ФСК ЕЭС» - МЭС Западной Сибири по протоколу ТСР/ІР по единой цифровой сети связи энергетики (ЕЦССЭ) — один раз в 30 минут. ИВК АИИС КУЭ ЕНЭС (Метроскоп) осуществляет соединение и получение данных с ЦСОД филиала ОАО «ФСК ЕЭС» - МЭС Западной Сибири в котором реализован протокол «АльфаЦЕНТР»/»Каскад» версии 1.26,

что исключает любое несанкционированное вмешательство и модификацию данных ПО «АльфаЦЕНТР».

В ИВК АИИС КУЭ ЕНЭС (Метроскоп) информация о результатах измерений автоматически формируется в архивы и сохраняется на глубину не менее 3,5 лет по каждому параметру. Сформированные архивные файлы автоматически сохраняются на «жестком» диске.

Один раз в сутки ИВК АИИС КУЭ ЕНЭС (Метроскоп) автоматически формирует файл отчета с результатами измерений при помощи СПО «Метроскоп», в формате ХМL, и автоматически передает его в интегрированную автоматизированную систему управления коммерческим учетом (далее - ИАСУ КУ) ОАО «АТС» и в филиал «СО ЕЭС» - Тюменское РДУ, через ІР сеть передачи данных ОАО «ФСК ЕЭС», с доступом в глобальную компьютерную сеть Internet.

Каналы связи не вносят дополнительных погрешностей в измеренные значения энергии и мощности, которые передаются от счетчика в ИВК, поскольку используется цифровой метод передачи данных.

Система обеспечения единого времени (далее - COEB) выполняет законченную функцию измерений времени и формируется на всех уровнях АИИС КУЭ

Контроль времени в часах счетчиков АИИС КУЭ автоматически выполняет УСПД, при каждом сеансе опроса (один раз в 30 минут), корректировка часов счетчика выполняется автоматически в случае расхождения времени часов в счетчике и УСПД на величину более \pm 1 секунды.

Корректировка часов УСПД выполняется автоматически через устройство синхронизации времени УССВ-35HVS, принимающего сигналы точного времени от спутников глобальной системы позиционирования (GPS) и которое подключено к УСПД по интерфейсу RS-232. Корректировка часов УСПД выполняется ежесекундно.

В ИВК ЦСОД МЭС Западной Сибири и ИВК АИИС КУЭ ЕНЭС (Метроскоп) также используются устройства синхронизации времени УССВ-35HVS, принимающие сигналы точного времени от спутников глобальной системы позиционирования (GPS). Корректировка часов серверов ИВК выполняется ежесекундно по сигналам УССВ-35HVS. При нарушении связи между УСПД и подключенного к нему УССВ-35HVS, время часов УСПД корректируется от сервера ИВК автоматически в случае расхождения часов УСПД и ИВК на величину более ± 1 секунды.

При нарушении работы канала связи между УСПД и счетчиком на длительный срок, часы счетчика корректируются от переносного инженерного пульта. При снятии данных с помощью переносного инженерного пульта через оптический порт счётчика производится автоматическая подстройка часов опрашиваемого счётчика.

Погрешность часов компонентов системы не превышает ±5 с.

Защита от несанкционированного доступа предусмотрена на всех уровнях сбора, передачи и хранения коммерческой информации и обеспечивается совокупностью технических и организационных мероприятий.

Журналы событий счетчика электроэнергии и УСПД отражают время (дата, часы, минуты) коррекции часов указанных устройств и расхождение времени в секундах, корректируемого и корректирующего устройств в момент непосредственно предшествующий корректировке.

Программное обеспечение

Таблица 1 — Идентификационные данные СПО «Метроскоп», установленного в ИВК АИИС КУЭ ЕНЭС (Метроскоп) и ПО «АльфаЦЕНТР», установленного в ЦСОД филиала ОАО «ФСК

ЕЭС» - МЭС Западной Сибири

EJC» - MIJC 3	ападнои Сибири				
Наименование программного обеспечения 1 СПО (АИИС	Идентификационное наименование программного обеспечения 2 СПО (АИИС КУЭ)	ионный номер) программного обеспечения 3	Цифровой идентификатор программного обеспечения (контрольная сумма исполняемого кода) 4 289aa64f646cd3873804db5fbd	Алгоритм вычисления цифрового идентификатора программного обеспечения	
КУЭ) ЕНЭС (Метроскоп)	ЕНЭС (Метроскоп)	1.00	653679	MD5	
	amra.exe		6e650c8138cb81a299ade24c1d 63118d		
	ifrun60.EXE		0e90d5de7590bbd89594906c8 df82ac2		
	trtu.exe		4e199ce8459276fd1cb868d991 f644e3		
	ACUtils.exe		8626b3449a0d41f3ba54fc85ed 0315c7		
«Альфа ЦЕНТР»	ACTaskManager.exe		82a64e23b26bf5ca46ca683b0e f25246		
	Альфа ЦЕНТР Диспетчер заданий.lnk	12.05.01.01	2035c1f5a49fa4977689dfc6b4 9dc395	MD5	
	amrserver.exe		22262052a42d978c9c72f6a90f 124841		
	amrc.exe		58bd614e4eb1f0396e0baf54c1 96324c		
	cdbora2.dll		309bed0ed0653b0e621501376 1edefef		
	Encryptdll.dll		0939ce05295fbcbbba400eeae8 d0572c		
	alphamess.dll		b8c331abb5e34444170eee931 7d635cd		

Метрологические характеристики ИК АИИС КУЭ, указанные в таблицах 3 и 4 нормированы с учетом ПО;

Защита программного обеспечения обеспечивается применением электронной цифровой подписи, разграничением прав доступа, использованием ключевого носителя. Уровень защиты - «С» в соответствии с МИ 3286-2010.

Метрологические и технические характеристики

Состав 1-го и 2-го уровня ИК приведен в таблице 2, метрологические характеристики ИК в таблицах 3 и 4.

Таблица 2 – Состав 1-го и 2-го уровня ИК

Ta	олица 2 – Состав	1-го и 2-го урс	овня ик			
\times			Измерительные	компоненты		
Номер ИК	Наименование объекта	TT	ТН	Счетчик	УСПД	Вид электро- энергии
4	ВЛ 35 кВ Пыть-Ях – Городская – 1	RING-CORE Госреестр № 44216-10 Кл. т. 0,5S 200/5 Зав. № 1000581606 Зав. № 1000581607 Зав. № 1000581611	НАМИ-35 УХЛ1 Госреестр № 19813-09 Кл. т. 0,2 35000/100 Зав. № 125	А1802RALXQV- P4GB-DW-4 Госреестр № 31857-11 Кл. т. 0,2S/0,5 Зав. № 01261767	RTU - 325 Госреестр	активная, реактивная
5	ВЛ 35 кВ Пыть-Ях – Городская – 2	RING-CORE Госреестр № 44216-10 Кл. т. 0,5S 200/5 Зав. № 1000581608 Зав. № 1000581609 Зав. № 1000581610	НАМИ-35 УХЛ1 Госреестр № 19813-09 Кл. т. 0,2 35000/100 Зав. № 50	А1802RALXQV- P4GB-DW-4 Госреестр № 31857-11 Кл. т. 0,2S/0,5 Зав. № 01261768	RTU - 325 Госреестр № 37288-08 Зав. № 590	активная, реактивная

Таблица 3 – Метрологические характеристики ИК АИИС КУЭ (активная энергия)

	•	Метрологические характеристики ИК								
Номер ИК	Диапазон значений силы тока	Основная относительная погрешность ИК, $(\pm d)$, %				Относительная погрешность ИК в рабочих условиях эксплуатации, $(\pm \delta)$, %				
		$\cos \varphi =$	$\cos \varphi =$	$\cos \varphi =$		$\cos \varphi =$	$\cos \varphi =$		$\cos \varphi$	
		1,0	0,87	0,8	0,5	1,0	0,87	0,8	= 0,5	
1	2	3	4	5	6	7	8	9	10	
	$0.02 I_{\text{H}_1} \le I_1 < 0.05 I_{\text{H}_1}$	1,5	2,1	2,5	4,7	1,7	2,2	2,5	4,7	
4, 5	$0.05I_{H_1} \le I_1 < 0.2I_{H_1}$	0,9	1,3	1,5	2,8	1,1	1,4	1,6	2,8	
	$0.2I_{H_1} \le I_1 < I_{H_1}$	0,7	0,9	1,0	1,9	0,9	1,1	1,2	2,0	
	$I_{H_1} \le I_1 \le 1,2I_{H_1}$	0,7	0,9	1,0	1,9	0,9	1,1	1,2	2,0	

Таблица 4 – Метрологические характеристики ИК АИИС КУЭ (реактивная энергия)

		Метрологические характеристики ИК							
Номер ИК	Диапазон значений силы тока		ия относи пость ИК,		Относительная погрешность ИК в рабочих условиях эксплуатации, $(\pm d)$, %				
		$\cos \varphi = 0.87$ $(\sin \varphi =$	$\cos \varphi = 0.8$ $(\sin \varphi =$	$\cos \varphi = 0.5$ $(\sin \varphi =$	$\cos \varphi = 0.87$ $(\sin \varphi =$	$\cos \varphi = 0.8$ $(\sin \varphi =$	$\cos \varphi = 0.5$ $(\sin \varphi =$		
		0,5)	0,6)	0,87)	0,5)	0,6)	0,87)		
1	2	3 4 5		6	7	8			
	$0.02 I_{\rm H_1} \le I_1 < 0.05 I_{\rm H_1}$	4,8	3,8	2,2	5,0	4,0	2,5		
4, 5	$0.05I_{\rm H_1} \le I_1 < 0.2I_{\rm H_1}$	3,0	2,4	1,4	3,3	2,7	1,9		
7, 3	$0.2\mathrm{IH}_1 \leq \mathrm{I}_1 < \mathrm{IH}_1$	2,0	1,6	1,1	2,4	2,1	1,6		
	$\mathrm{IH}_1 \leq \mathrm{I}_1 \leq 1{,}2\mathrm{IH}_1$	2,0	1,6	1,1	2,4	2,1	1,6		

Примечания:

- 1. Характеристики погрешности ИК даны для измерения электроэнергии и средней мощности (получасовая);
- 2. В качестве характеристик относительной погрешности указаны границы интервала, соответствующие вероятности 0,95;
 - 3. Нормальные условия:
 - параметры питающей сети: напряжение (220 \pm 4,4) В; частота (50 \pm 0,5) Γ ц;
- параметры сети: диапазон напряжения (0.98-1.02)Uн; диапазон силы тока (1.0-1.2)Iн; коэффициента мощности $\cos \phi (\sin \phi) 0.87(0.5)$; частота (50 ± 0.5) Γ ц;
- температура окружающего воздуха: TT от 15°C до 35°C; TH от 15°C до 35°C; счетчиков: от 21°C до 25°C; УСПД от 15°C до 25°C;
 - относительная влажность воздуха (70 \pm 5) %;
 - атмосферное давление (100 ± 4) кПа.
 - 4. Рабочие условия эксплуатации:

для ТТ и ТН:

- параметры сети: диапазон первичного напряжения (0,9-1,1)Uн1; диапазон силы первичного тока (0,02(0,01)-1,2)Ін1; коэффициент мощности соѕф $(\sin\phi)~0,5-1,0(0,6-0,87)$; частота $(50\pm0,5)~\Gamma$ ц;
 - температура окружающего воздуха от минус 10°C до 30°C;
 - относительная влажность воздуха (70 ± 5) %;
 - атмосферное давление (100 \pm 4) кПа.

Для электросчетчиков:

- параметры сети: диапазон вторичного напряжения (0.9-1.1)Uн2; диапазон силы вторичного тока (0.01-1.2)Iн2; диапазон коэффициента мощности $\cos \varphi$ ($\sin \varphi$) 0.5-1.0 (0.6-0.87); частота (50 ± 0.5) Γ Ц;
 - магнитная индукция внешнего происхождения 0,5 мТл;
 - температура окружающего воздуха от 10°C до 30°C;
 - относительная влажность воздуха (40 60) %;
 - атмосферное давление (100 \pm 4) кПа.

Для аппаратуры передачи и обработки данных:

- параметры питающей сети: напряжение (220 \pm 10) В; частота (50 \pm 1) Гц;

- температура окружающего воздуха от 10°C до 30°C;
- относительная влажность воздуха (70 ± 5) %;
- атмосферное давление (100 \pm 4) кПа
- 5. Допускается замена измерительных трансформаторов и счетчиков на аналогичные утвержденных типов с метрологическими характеристиками не хуже, чем у перечисленных в Таблице 2, УСПД на однотипный утвержденного типа.

Надежность применяемых в АИИС КУЭ компонентов:

- счетчик среднее время наработки на отказ: для счетчиков типа Альфа A1800 не менее 120000 ч; среднее время восстановления работоспособности 2 ч;
- УСПД среднее время наработки на отказ не менее T=100000 ч, среднее время восстановления работоспособности t = 2 ч;
- сервер среднее время наработки на отказ не менее $T=45000\ \mathrm{y}$, среднее время восстановления работоспособности $\mathrm{t}\mathrm{b}=1\ \mathrm{y}$.

Надежность системных решений:

- резервирование питания УСПД с помощью источника бесперебойного питания и устройства ABP;
- резервирование каналов связи: информация о результатах измерений может передаваться с помощью электронной почты и сотовой связи;
 - журналах событий счетчика и УСПД фиксируются факты:
 - параметрирование;
 - пропадания напряжения;
 - коррекции времени;
 - журнал УСПД:
 - параметрирование;
 - пропадания напряжения;
 - коррекции времени в счетчике и сервере;
 - пропадание и восстановление связи со счетчиком;
 - выключение и включение сервера;

Защищённость применяемых компонентов:

- механическая защита от несанкционированного доступа и пломбирование:
- электросчётчика;
- промежуточных клеммников вторичных цепей напряжения;
- испытательной коробки;
- УСПД;
- защита на программном уровне информации при хранении, передаче,

параметрирование:

- пароль на счетчике;
- пароль на УСПД;
- пароли на сервере, предусматривающие разграничение прав доступа к измерительным данным для различных групп пользователей.

Возможность коррекции времени в:

- электросчетчиках (функция автоматизирована);
- УСПД (функция автоматизирована);
- ИВК (функция автоматизирована).

Возможность сбора информации:

- о состоянии средств измерений (функция автоматизирована);
- о результатах измерений (функция автоматизирована).

Цикличность:

- измерений 30 мин (функция автоматизирована);
- сбора 30 мин (функция автоматизирована).

Глубина хранения информации:

- электросчетчик тридцатиминутный профиль нагрузки в двух направлениях при отключении питания: для счетчиков типа Альфа A1800 не менее 30 лет;
- ИВКЭ результаты измерений, состояние объектов и средств измерений не менее 35 суток;
- ИВК результаты измерений, состояние объектов и средств измерений не менее 3,5 лет.

Знак утверждения типа

Знак утверждения типа наносится на титульные листы эксплуатационной документации на систему автоматизированную информационно-измерительную коммерческого учета электроэнергии (АИИС КУЭ) ПС 500/220 кВ «Пыть-Ях» с Изменением N = 1 типографическим способом.

Комплектность средства измерений

Комплектность АИИС КУЭ определяется проектной документацией на АИИС КУЭ. В комплект поставки входит техническая документация на систему и на комплектующие средства измерений.

Комплектность АИИС КУЭ представлена в таблице 5.

Таблица 5 – Комплектность АИИС КУЭ

Наименование (обозначение) изделия	Количество (шт.)
Трансформаторы тока RING-CORE	6
Трансформаторы напряжения НАМИ-35 УХЛ1	2
Счетчик электрической энергии многофункциональные А1800	2
Комплексы аппаратно-программых средств для учета электроэнергии на основе УСПД серии RTU-300	1
YCCB-35HVS	3
Комплексы измерительно-вычислительные АИИС КУЭ ЕНЭС (Метроскоп) ИВК АИИС КУЭ ЕНЭС (Метроскоп)	1
СПО "Метроскоп"	1
ПО "АльфаЦЕНТР"	1
ИВК ЦСОД МЭС Западной Сибири	1
Методика поверки	1
Формуляр	1
Инструкция по эксплуатации	1

Поверка

осуществляется по документу МП 54843-14 «Система автоматизированная информационноизмерительная коммерческого учета электроэнергии (АИИС КУЭ) ПС 500/220 кВ «Пыть-Ях» с Изменением № 1. Методика поверки», утвержденному ФГУП «ВНИИМС» в декабре 2013 года.

Перечень основных средств поверки:

- трансформаторов тока в соответствии с ГОСТ 8.217-2003 «ГСИ. Трансформаторы тока. Методика поверки»;
- трансформаторов напряжения в соответствии с ГОСТ 8.216-2011 «ГСИ. Трансформаторы напряжения. Методика поверки»;
- по МИ 3195-2009. «ГСИ. Мощность нагрузки трансформаторов напряжения без отключения цепей. Методика выполнения измерений»;
- по МИ 3196-2009. «ГСИ. Вторичная нагрузка трансформаторов тока без отключения цепей. Методика выполнения измерений»;
- счетчика Альфа А1800 в соответствии с документом «Счетчики электрической энергии трехфазные многофункциональные Альфа А1800. Методика поверки ДЯИМ.411152.018 МП» утвержденным ГЦИ СИ ФГУП «ВНИИМС» в 2011 г.;
- УСПД RTU-325 в соответствии с документом «Устройства сбора и передачи данных RTU-325 и RTU-325L. Методика поверки ДЯИМ.466.453.005МП», утвержденным ГЦИ СИ ФГУП «ВНИИМС» в 2008 г.;
- ИВК АИИС КУЭ ЕНЭС (Метроскоп) в соответствии с документом ЕМНК.466454.005.МП «Комплексы измерительно-вычислительные АИИС КУЭ ЕНЭС (Метроскоп) ИВК АИИС КУЭ ЕНЭС (Метроскоп). Методика поверки», утвержденным ФГУ «Пензенский ЦСМ» 30 августа 2010 г.;
- радиочасы МИР РЧ-01, принимающие сигналы спутниковой навигационной системы Global Positioning System (GPS), номер в Государственном реестре средств измерений 27008-04;
- Переносной компьютер с ПО и оптический преобразователь для работы со счетчиком АИИС КУЭ и с ПО для работы с радиочасами МИР РЧ-01;
- термогигрометр CENTER (мод.314): диапазон измерений температуры от -20 до + 60 °C, дискретность 0.1 °C; диапазон измерений относительной влажности от 10 до 100 %, дискретность 0.1 %.

Сведения о методиках (методах) измерений

Метод измерений изложен в документе 008-115-43-АСУ ИЭ «Система автоматизированная информационно-измерительная коммерческого учета электроэнергии Единой национальной электрической сети на АИИС КУЭ ПС 500/220 кВ «Пыть-Ях» филиал ОАО «ФСК ЕЭС» - МЭС Западной Сибири. Инструкция по эксплуатации КТС».

Нормативные и технические документы, устанавливающие требования к системе автоматизированной информационно-измерительной коммерческого учета электроэнергии (АИИС КУЭ) ПС 500/220 кВ «Пыть-Ях» с Изменением № 1

ΓΟCT P 8.596-2002	«ГСИ.	Метрологическое	обеспечение	измерительных	систем.	Основные
	положе	ения»,				

ГОСТ 22261-94	«Средства	измерений	электрических	И	магнитных	величин.	Общие
	технически	е условия».					

ГОСТ 1983-2001 «Трансформаторы напряжения. Общие технические условия».

ГОСТ 7746-2001 «Трансформаторы тока. Общие технические условия».

ГОСТ Р 52323-2005 «Аппаратура для измерения электрической энергии переменного тока. Частные требования. Часть 22. Статические счетчики активной энергии классов точности 0,2S и 0,5S».

ГОСТ Р 52322-2005 «Аппаратура для измерения электрической энергии переменного тока. Частные требования. Часть 21. Статические счетчики активной энергии классов точности 1 и 2».

ГОСТ Р 52425-2005 «Аппаратура для измерения электрической энергии переменного тока. Частные требования. Часть 23. Статические счетчики реактивной энергии».

ГОСТ 34.601-90 «Информационная технология. Комплекс стандартов на автоматизированные системы. Автоматизированные системы. Стадии создания».

008-115-43-АСУ ИЭ «Система автоматизированная информационно-измерительная коммерческого учета электроэнергии Единой национальной электрической сети на АИИС КУЭ ПС 500/220 кВ «Пыть-Ях» филиал ОАО «ФСК ЕЭС» - МЭС Западной Сибири. Инструкция по эксплуатации КТС».

Рекомендации по областям применения в сфере государственного регулирования обеспечения единства измерений

- при осуществлении торговли и товарообменных операций.

Изготовитель

Общество с ограниченной ответственностью «Велес» (ООО «Велес»)

Юридический адрес: 624071, Россия, Свердловская область, г. Среднеуральск, ул. Строителей, д.8, оф.53,

Почтовый адрес: 624071, Свердловская область, г. Среднеуральск, ул. Бахтеева, 25А-60

тел./факс: +79022749085/-

Испытательный центр

Федеральное государственное унитарное предприятие «Всероссийский научноисследовательский институт метрологической службы» (ФГУП «ВНИИМС»)

Адрес: 119361, г. Москва, ул. Озерная, д.46

Тел./факс: (495)437-55-77 / 437-56-66; E-mail: <u>office@vniims.ru</u>, <u>www.vniims.ru</u>

Аттестат аккредитации ФГУП «ВНИИМС» по проведению испытаний средств измерений в целях утверждения типа № 30004-13 от 26.07.2013 г.

Заместитель Руководителя Федерального агентства по техническому регулированию и метрологии

Ф.В. Булыгин

М.п. « » 2014 г.