ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Система автоматизированная информационно-измерительная коммерческого учета электроэнергии (АИИС КУЭ) ОАО «Читаэнергосбыт»

Назначение средства измерений

Система автоматизированная информационно-измерительная коммерческого учета электроэнергии (АИИС КУЭ) ОАО «Читаэнергосбыт» (далее по тексту - АИИС КУЭ) предназначена для измерения активной и реактивной электроэнергии, формирования отчетных документов и передачи информации в ОАО «АТС», ОАО «СО ЕЭС» и прочим заинтересованным организациям в рамках согласованного регламента.

Описание средства измерений

АИИС КУЭ представляет собой многоуровневую автоматизированную измерительную систему с централизованным управлением и распределенной функцией измерения.

Измерительно-информационные каналы (ИИК) АИИС КУЭ состоят из трёх уровней:

1-ый уровень — измерительные трансформаторы напряжения (ТН), измерительные трансформаторы тока (ТТ), многофункциональные счетчики активной и реактивной электрической энергии (далее по тексту — счетчики), вторичные измерительные цепи и технические средства приема-передачи данных;

2-ой уровень – измерительно-вычислительный комплекс электроустановки (ИВКЭ) включающий устройство сбора и передачи данных (УСПД), технические средства приемапередачи данных, каналы связи, для обеспечения информационного взаимодействия между уровнями системы.

3-ий уровень — информационно-вычислительный комплекс (ИВК), включающий в себя серверы филиала ОАО «МРСК Сибири» - «Читаэнерго», филиала ОАО «МРСК Сибири» - «Бурятэнерго», ОАО «Читаэнергосбыт», устройство синхронизации системного времени (УССВ), автоматизированные рабочие места (АРМ), а также совокупность аппаратных, каналообразующих и программных средств, выполняющих сбор информации с нижних уровней, ее обработку и хранение.

АИИС КУЭ решает следующие основные задачи:

- измерение 30-минутных приращение активной и реактивной электроэнергии;
- периодический (1 раз в сутки) и/или по запросу автоматический сбор привязанных к единому календарному времени результатов измерений приращений электроэнергии с заданной дискретностью учета (30 мин);
- хранение результатов измерений по заданным критериям (первичной информации, рассчитанной, замещенной и т. д.) в специализированной базе данных, отвечающей требованию повышенной защищенности от потери информации (резервирование баз данных) и от несанкционированного доступа;
- прием и обработка данных смежных АИИС КУЭ (30-минутных приращений активной и реактивной электроэнергии по точкам измерений, входящим в сечения коммерческого учета с ОАО «Читаэнергосбыт», данных о состоянии соответствующих средств измерений);
- формирование актов учета перетоков и интегральных актов электроэнергии (направляемых коммерческому оператору оптового рынка) по сечениям между ОАО «Читаэнергосбыт» и смежными субъектами оптового рынка электроэнергии и мощности;

- формирование актов учета перетоков в XML формате макетов 50080, 51070, 80020, 80030, 80040, 80050, а также в иных согласованных форматах;
- передача результатов измерений в организации участники оптового рынка электроэнергии;
- обеспечение защиты оборудования, программного обеспечения и данных от несанкционированного доступа на физическом и программном уровне (установка паролей и т.п.);
- диагностика и мониторинг функционирования технических и программных средств АИИС КУЭ ОАО «Читаэнергосбыт»;
- конфигурирование и настройка параметров АИИС КУЭ;
- ведение системы единого времени в АИИС КУЭ (коррекция часов АИИС КУЭ);
- ведение и передача журналов событий компонентов АИИС КУЭ.

Принцип действия:

Первичные токи и напряжения преобразуются измерительными трансформаторами в аналоговые унифицированные сигналы, которые по проводным линиям связи поступают на измерительные входы счетчика электроэнергии. В счетчике мгновенные значения аналоговых сигналов преобразуются в цифровой сигнал. По мгновенным значениям силы электрического тока и напряжения в микропроцессоре счетчика вычисляются соответствующие мгновенные значения активной, реактивной и полной мощности без учета коэффициентов трансформации. Электрическая энергия, как интеграл по времени от мощности, вычисляется для интервалов времени 30 мин.

Результаты измерений для каждого интервала измерения и 30-минутные данные коммерческого учета соотнесены с текущим календарным временем. Результаты измерений передаются в целых числах кВт·ч (кВар·ч).

Цифровой сигнал с выходов счетчиков посредством линий связи RS – 485 поступает в УСПД, где производится сбор, хранение результатов измерений и далее при помощи выделенных каналов связи результаты измерений передаются на сервер филиала ОАО «МРСК Сибири» - «Читаэнерго» (для ИИК №1) и сервер филиала ОАО «МРСК Сибири» - «Читаэнерго» (для ИИК № 2 - 4). Серверы филиала ОАО «МРСК Сибири» - «Читаэнерго», филиала ОАО «МРСК Сибири» - «Бурятэнерго» в автоматическом режиме раз в сутки передают результаты измерений и данные о состоянии средств измерений на сервер ОАО «Читаэнергосбыт» в формате электронного документа ХМL макетов 80020, 80030.

Сервер ОАО «Читаэнергосбыт» при помощи программного обеспечения (ПО) «Программный комплекс (ПК) «УЧЕТ ЭНЕРГОРЕСУРСОВ», осуществляет хранение, оформление справочных и отчетных документов и последующую передачу информации всем заинтересованным субъектам, в рамках согласованного регламента.

АИИС КУЭ ОАО «Читаэнергосбыт» оснащена системой обеспечения единого времени (СОЕВ). Для обеспечения единства измерений используется единое календарное время. В СОЕВ входят часы УССВ, счетчиков, УСПД, серверов. В качестве УССВ серверов филиала ОАО «МРСК Сибири» - «Читаэнерго» и филиала ОАО «МРСК Сибири» - «Бурятэнерго» используются УССВ на базе GPS-приемников модели 35 HVS. В качестве УССВ сервера ОАО «Читаэнергосбыт» используются радиочасы МИР РЧ-01 (Госреестр № 27008-04).

Сравнение показаний часов серверов и УССВ происходит с цикличностью один раз в час. Синхронизация осуществляется при расхождении показаний часов серверов и УССВ на величину более чем ± 0.5 с.

Сравнение показаний часов УСПД, расположенном на ПС Беклемишево 110/10 кВ и сервера филиала ОАО «МРСК Сибири» - «Читаэнерго» происходит при каждом обращении к УСПД, но не реже 1 раза в сутки. Синхронизация осуществляется при расхождении показаний часов УСПД и сервера филиала ОАО «МРСК Сибири» - «Читаэнерго» на величину более чем ± 1 с.

Сравнение показаний часов УСПД, расположенных на ПС Телемба 35/10 кВ, ПС Никольская 110/10 кВ и УССВ, на базе встроенных GPS-приемников, происходит при каждом обращении к УСПД, но не реже 1 раза в сутки. Синхронизация осуществляется при расхождении показаний часов УСПД и УССВ на величину более чем ± 0.5 с.

Сравнение показаний часов счетчиков и УСПД происходит при каждом обращении к счетчикам, но не реже одного раза в 30 минут. Синхронизация осуществляется при расхождении показаний часов счетчиков и УСПД на величину более чем ± 1 с.

Программное обеспечение

Программные средства АИИС КУЭ содержат: базовое (системное) ПО, включающее операционную систему, программы обработки текстовой информации, сервисные программы, ПО систем управления базами данных (СУБД) и прикладное ПО ПК УЧЕТ ЭНЕРГОРЕСУРСОВ.

Состав программного обеспечения АИИС КУЭ приведён в таблице 2.

Таблица 2

Наименование программного обеспечения	Наименование программного модуля (идентификационное наименование программного обеспечения)	Наименование файла	Номер версии программного обеспечения	Цифровой идентификатор программного обеспечения (контрольная сумма исполняемого кода)	Алгоритм вычисления цифрового идентификатора программного обеспечения	
ПК УЧЕТ ЭНЕРГОРЕСУ РСОВ	конфигуратор сервера приложений АСКУЭ/АСДУ	appconf.dll		64C5192C5A4F712D94D30 BBA1F201A3B		
	сервер приложений АСКУЭ/АСДУ	appserv.dll		1C9E7DAC8F31ED272F9D 85A1C318AA8A	MD5	
	модуль импор- та/экспорта для XML	impexpxml.dll	(v 1.9.1)	0B94641A0FE0777819B69 8DFCB8B7312		
	библиотека модулей импорта/экспорта	mirimpexp.dll	изм.1	7315C9E5264504730DF2B C204AEB4926		
	Библиотека драйверов ЭЛЕКТРИЧЕСКИЕ СЧЕТЧИКИ	SchEl.dll		5A0237475B862AD970048 2E644F2F401		

Уровень защиты программного обеспечения АИИС КУЭ от непреднамеренных и преднамеренных изменений соответствует уровню С по МИ 3286-2010.

Метрологические и технические характеристики

Состав ИИК АИИС КУЭ ОАО «Читаэнергосбыт» приведен в Таблице 3. Метрологические характеристики ИИК АИИС КУЭ ОАО «Читаэнергосбыт» приведены в Таблице 4.

Таблица 3

№ ИИК	Наименование	Состав ИИК					
	объекта	TT	TH	Счетчик	ИВКЭ	ИВК	троэнер- гии
1	ПС Беклемишево 110/10 кВ, ВЛ-110 кВ СБ-123	ТФНД-110М Кл.т. 0,5 100/5 Зав. № 6176 Зав. № 10706 Госреестр № 2793-71 ТФЗМ-110Б-IV Кл.т. 0,5 100/5 Зав. № 13872 Госреестр № 26422-04	НАМИ-110 УХЛ1 Кл. т 0,5 110000/√3/ 100/√3 Зав. № 556 Зав. № 518 Зав. № 502 Госреестр № 24218-08	EA02RAL-P4B-4 кл. т 0,2S/0,5 Зав. № 01127084 Госреестр № 16666-97	RTU-325 3ab.№ 001302 Госреестр № 19495-03	5	Активная Реактивная
2	ПС Телемба 35/10 кВ, Ввод 35 кВ Т1	ТВИ-35 Кл.т. 0,5S 200/1 Зав. № 82 Зав. № 88 Госреестр № 37159-08	НАМИ-35 УХЛ1 Кл. т 0,5 35000/100 Зав. № 833 Госреестр № 19813-05	A1802RAL- P4GB-DW-4 кл. т 0,2S/0,5 Зав. № 01196964 Госреестр № 31857-06	-325 305170 secrp 88-08	HP ProLiant DL380 G5	Активная Реактивная
3	ПС Телемба 35/10 кВ, Ввод 35 кВ Т2	ТВИ-35 Кл.т. 0,5S 200/1 Зав. № 75 Зав. № 76 Госреестр № 37159-08	Госреестр № 19813-05 Госреестр № 31857-06 Сетина ОСТООО ОСТООО ОСТООО ОСТООО ОСТООО ОСТООО ОСТООО ОСТОООО ОСТОООО ОСТООООО ОСТООООООООООООООООООООООООООООООООООО	HP Pr	Активная Реактивная		
4	ПС Никольская 110/10 кВ, яч. фидера № 3, ВЛ-10 кВ Харауз	ТЛМ-10 Кл.т. 0,5 100/5 Зав. № 4397 Зав. № 0391 Госреестр № 2473-05	3НОЛ.06 Кл. т 0,5 10000/√3/ 100/√3 Зав. № 6301 Зав. № 6284 Зав. № 6277 Госреестр № 03344-04	A1802RL-P4GB- W-3 кл. т 0,2S/0,5 Зав. № 06874662 Госреестр № 31857-06	RTU-325 3ab.№ 002119 Госреестр № 19495-03		Активная Реактивная

Таблица 4

гаолица 4							
11 11116		Пределы допускаемой относительной погрешности ИИК при измерении					
Номер ИИК	cosφ	активной электрической энергии в рабочих условиях эксплуатации δ, %					
		$I_{1(2)} \le I_{M3M} < I_{5\%}$	$I_{5\%} \le I_{M3M} < I_{20\%}$	$I_{20\%} \le I_{u_{3M}} < I_{100\%}$	$I_{100} \% \le I_{M3M} \le I_{120} \%$		
	1,0	-	±1,9	±1,2	±1,0		
1, 4	0,9	-	$\pm 2,4$	±1,4	±1,2		
(TT 0,5; TH 0,5;	0,8	-	±2,9	±1,7	±1,4		
Счетчик 0,2S)	0,7	-	±3,6	±2,0	±1,6		
	0,5	-	±5,5	±3,0	±2,3		
	1,0	±1,9	±1,2	±1,0	±1,0		
2, 3	0,9	±2,4	±1,4	±1,2	±1,2		
(TT 0,5S; TH 0,5;	0,8	±2,9	±1,7	±1,4	±1,4		
Счетчик 0,2S)	0,7	±3,6	±2,1	±1,6	±1,6		
	0,5	±5,5	±3,0	±2,3	±2,3		
			ИК при измерении				
Номер ИИК	cosφ	реактивной электрической энергии в рабочих условиях					
TIOMED TITIK		эксплуатации δ, %					
		$I_{1(2)} \le I_{M3M} < I_{5\%}$	$I_{5 \%} \le I_{_{\rm H3M}} < I_{_{20 \%}}$	$I_{20\%} \le I_{M3M} < I_{100\%}$	$I_{100 \%} \le I_{\text{изм}} \le I_{120 \%}$		
1, 4	0,9	-	$\pm 6,5$	±3,6	±2,7		
(TT 0,5; TH 0,5;	0,8	-	±4,5	±2,5	±2,0		
Счетчик 0,5)	0,7	-	±3,6	±2,1	±1,7		
	0,5	-	±2,8	±1,7	±1,4		
2, 3 (TT 0,5S; TH 0,5;	0,9	±8,1	±3,8	±2,7	±2,7		
	0,8	±7,5	±2,8	±2,0	±2,0		
Счетчик 0,5)	0,7	±7,2	±2,3	±1,7	±1,7		
C40140K 0,3)	0,5	±7,0	±1,9	±1,4	±1,4		

Ход часов компонентов АИИС КУЭ не превышает ±5 с/сут.

Примечания:

- 1. Погрешность измерений $\delta_{1(2)\%P}$ и $\delta_{1(2)\%Q}$ для $\cos \phi = 1,0$ нормируется от $I_{1\%}$, а погрешность измерений $\delta_{1(2)\%P}$ и $\delta_{1(2)\%Q}$ для $\cos \phi < 1,0$ нормируется от $I_{2\%}$.
- 2. Характеристики относительной погрешности ИИК даны для измерения электроэнергии и средней мощности (30 мин.).
- 3. В качестве характеристик относительной погрешности указаны границы интервала, соответствующие вероятности 0,95.
- 4. Нормальные условия эксплуатации компонентов АИИС КУЭ:
 - напряжение от 0,98· Uном до 1,02· Uном;
 - сила тока от Іном до 1,2·Іном, $\cos \varphi = 0,9$ инд;
 - температура окружающей среды: от плюс 15 до плюс 25 °C.
- 5. Рабочие условия эксплуатации компонентов АИИС КУЭ:
 - напряжение питающей сети 0,9·Uном до 1,1·Uном,
 - сила тока от 0,01·Іном до 1,2·Іном для ИИК № 2, 3, от 0,05 Іном до 1,2 Іном для ИИК № 1, 4;
 - температура окружающей среды:
 - для счетчиков электроэнергии от плюс 5 до плюс 35 °C;
 - для трансформаторов тока по ГОСТ 7746-2001;
 - для трансформаторов напряжения по ГОСТ 1983-2001.

- 6. Трансформаторы тока по ГОСТ 7746-2001, трансформаторы напряжения по ГОСТ 1983-2001, счетчики электроэнергии в режиме измерения активной электроэнергии по ГОСТ 30206-94, ГОСТ Р 52323-2005, в режиме измерения реактивной электроэнергии по ГОСТ 26035-83;
- 7. Допускается замена измерительных трансформаторов и счетчиков электроэнергии на аналогичные (см. п. 6 Примечания) утвержденных типов с метрологическими характеристиками не хуже, чем у перечисленных в Таблице 3. Допускается замена компонентов системы на однотипные утвержденного типа. Замена оформляется актом в установленном на объекте порядке. Акт хранится совместно с настоящим описанием типа АИИС КУЭ как его неотъемлемая часть.

Параметры надежности применяемых в АИИС КУЭ измерительных компонентов:

- счетчик электроэнергии ЕвроАльфа среднее время наработки на отказ не менее 50000 часов;
- счетчик электроэнергии Альфа А1800 среднее время наработки на отказ не менее 120000 часов;
- УСПД RTU-325 (Госреестр № 37288-08) среднее время наработки на отказ не менее 100000 часов
- УСПД RTU-325 (Госреестр № 19495-03) среднее время наработки на отказ не менее 40000 часов
- радиочасы МИР РЧ-01 среднее время наработки на отказ не менее 10000 часов.

Среднее время восстановления, при выходе из строя оборудования:

- для счетчиков электроэнергии Тв ≤ 2 часа;
- для УСПД Тв ≤ 2 часа;
- для сервера Тв ≤ 1 час;
- для компьютера APM Тв ≤ 1 час;
- для модема Тв ≤ 1 час.

Защита технических и программных средств АИИС КУЭ от несанкционированного доступа:

- клеммники вторичных цепей измерительных трансформаторов имеют устройства для пломбирования;
- панели подключения к электрическим интерфейсам счетчиков защищены механическими пломбами:
- наличие защиты на программном уровне возможность установки многоуровневых паролей на счетчиках, УССВ, УСПД, сервере, АРМ;
- организация доступа к информации ИВК посредством паролей обеспечивает идентификацию пользователей и эксплуатационного персонала;
- защита результатов измерений при передаче.

Наличие фиксации в журнале событий счетчика следующих событий

- фактов параметрирования счетчика;
- фактов пропадания напряжения;
- фактов коррекции времени.

Возможность коррекции времени в:

- счетчиках (функция автоматизирована);
- УСПД (функция автоматизирована);
- сервере (функция автоматизирована).

Глубина хранения информации:

• счетчик Альфа А1800 тридцатиминутный профиль нагрузки в двух направлениях не менее 172 суток; при отключении питания - не менее 10 лет;

- счетчик ЕвроАльфа тридцатиминутный профиль нагрузки в двух направлениях не менее 74 дней (для нереверсивных счетчиков 146 дней); при отключении питания не менее 5 лет;
- УСПД суточные данные о тридцатиминутных приращениях электроэнергии по каждому каналу и электроэнергии потребленной за месяц по каждому каналу не менее 45 суток; при отключении питания не менее 5 лет;
- ИВК хранение результатов измерений и информации о состоянии средства измерений не менее 3,5 лет.

Знак утверждения типа

Знак утверждения типа наносится на титульные листы эксплуатационной документации АИИС КУЭ типографским способом.

Комплектность средства измерений

Комплектность АИИС КУЭ приведена в Таблице 5.

Таблина 5

Таолица 3		Кол-во,
Наименование	Тип	жол-во, шт.
T 1	танп 110М	
Трансформатор тока	ТФНД-110М	2
Трансформатор тока	ТФЗМ-110Б-IV	1
Трансформатор тока	ТВИ-35	4
Трансформатор тока	ТЛМ-10	2
Трансформатор напряжения	НАМИ-110 УХЛ1	3
Трансформатор напряжения	НАМИ-35 УХЛ1	2
Трансформатор напряжения	3НОЛ.06	3
Электросчетчик	EA02RAL-P4B-4	1
Электросчетчик	A1802RAL-P4GB-DW-4	2
Электросчетчик	A1802RL-P4GB-W-3	1
УСПД	RTU-325	3
Сервер ОАО «Читаэнергосбыт»	HP Proliant DL360 G5	1
Факс-модем ZyXEL U-336E Plus	ZyXel U336E	3
Коммутатор 10/100 Fast Ethernet	D-link DES-1016R+	1
Сервер асинхронный	Moxa NPort5610-8	1
Устройство синхронизации системного времени	Радиочасы МИР РЧ-01	1
Истоници бооноробойного нитония	APC Smart – UPS	1
Источник бесперебойного питания	SUM3000RMXLI2U	1
Методика поверки	МП 1623/550-2013	1
Формуляр	ЭССО.411711.АИИС. 246.ПФ	1

Поверка

осуществляется по документу МП 1623/550-2013 «ГСИ. Система автоматизированная информационно-измерительная коммерческого учета электроэнергии (АИИС КУЭ) ОАО «Читаэнергосбыт». Методика поверки», утвержденному ГЦИ СИ ФБУ «Ростест-Москва» 05 августа 2013 года.

Основные средства поверки:

- трансформаторов тока − по ГОСТ 8.217-2003;
- трансформаторов напряжения по ГОСТ 8.216-2011;
- счетчиков электроэнергии Альфа A1800 по методике поверки МП-2203-0042-2006, утвержденной ГЦИ СИ «ВНИИМ им. Менделеева» в 2006 г.;
- счетчиков электроэнергии ЕвроАльфа по методике поверки № 026/447-2007, утвержденной ГЦИ СИ ФГУ «Ростест-Москва» в 2007 г.;
- RTU-325 по документу «Комплексы аппаратно-программых средств для учёта электорэнергии на основе УСПД RTU-300. Методика поверки», утвержденному ГЦИ СИ ФГУП «ВНИИМС» в 2003 г.;
- RTU-325 по методике поверки ДЯИМ 466.453.005МП, утвержденной ГЦИ СИ ФГУП «ВНИИМС» в 2008 г.;
- Радиочасы МИР РЧ-01 в соответствии с разделом 8 «Методика поверки» руководства по эксплуатации М01.063.00.000РЭ, согласованным ГЦИ СИ ФГУП «ВНИИФТРИ» в 2004 г.;
- Термометр по ГОСТ 28498-90, диапазон измерений от минус 40 до плюс 50° С, цена деления 1° С.

Сведения о методиках (методах) измерений

Методика измерений приведена в документе: «Методика (методы) измерений количества электрической энергии с использованием автоматизированной информационно-измерительной системы коммерческого учета электроэнергии (АИИС КУЭ) ОАО «Читаэнергосбыт» и ИК». Свидетельство об аттестации методики (методов) измерений № 0057/2013-01.00324-2011 от 22.04.2013 г.

Нормативные документы, устанавливающие требования к системе автоматизированной информационно-измерительной коммерческого учета электроэнергии (АИИС КУЭ) ОАО «Читаэнергосбыт».

- $1~\Gamma OCT~P~8.596-2002~\Gamma CИ.$ Метрологическое обеспечение измерительных систем. Основные положения.
- 2 ГОСТ 22261-94 Средства измерений электрических и магнитных величин. Общие технические условия.
- 3 ГОСТ 34.601-90 Информационная технология. Комплекс стандартов на автоматизированные системы. Автоматизированные системы. Стадии создания.
 - 4 ГОСТ 7746-2001 Трансформаторы тока. Общие технические условия.
 - 5 ГОСТ 1983-2001 Трансформаторы напряжения. Общие технические условия.
- 6 ГОСТ Р 52323-2005 Аппаратура для измерения электрической энергии переменного тока. Частные требования. Часть 22. Статические счетчики активной энергии классов точности 0,2S и 0,5S.

Рекомендации по областям применения в сфере государственного регулирования обеспечения единства измерений

Осуществление торговли и товарообменных операций.

Изготовитель

ООО «Корпорация «ЭнергоСнабСтройСервис»

Адрес (юридический): 121500, г. Москва, Дорога МКАД 60 км, д.4А, офис 204

Адрес (почтовый): 600021, г. Владимир, ул. Мира, д.4а, офис № 3

Телефон: (4922) 33-81-51, 34-67-26 Факс: (4922) 42-44-93

Испытательный центр

Федеральное бюджетное учреждение «Российский центр испытаний и сертификации – Москва» (ФБУ «Ростест-Москва»)

Адрес: 117418, г. Москва, Нахимовский проспект, д. 31

Тел.: (495) 544-00-00, 668-27-40, (499) 129-19-11 Факс: (499) 124-99-96

Аттестат аккредитации № 30010-10 от 15.03.2010 г.

Заместитель			
Руководителя Федерального агент-			
ства по техническому регулирова-			
нию и метрологии			Ф. В. Булыгин
	М.п.	« »	2013 г.