ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Комплексы учета электрической энергии низкого напряжения СЦЭ-DevLink

Назначение средства измерений

Комплекс учета электрической энергии низкого напряжения СЦЭ-DevLink (далее комплекс учета) предназначен для измерения активной электрической энергии в сетях низкого напряжения в многоквартирных домах, времени и передачи результатов измерений во внешние измерительные системы.

Описание средства измерений

Комплекс учета выполняется по типовому проекту и представляет собой двухуровневую многоканальную измерительную систему с централизованным управлением и распределенной функцией измерения.

Измерительные каналы комплекса учета состоят из трансформаторов тока; счетчиков электрической энергии следующих типов: СЕ 102, СЭБ-2А.07Д, СОЭ-55, «Меркурий 200», «Меркурий 230», МЕ модификации МЕ172, «Лейне Электро-01М» и устройства сбора и передачи данных (УСПД) типа DevLink.

Принцип действия комплекса учета при измерении электрической энергии заключается в измерении электрической энергии с использованием счетчиков электрической энергии с привязкой результатов измерений к времени в шкале времени, хранящейся в часах УСПД, сохранении результатов измерений в базе данных УСПД, предоставлении доступа к данным, хранящимся в памяти УСПД по протоколам SSH и OPC.

В измерительных каналах, в состав которых включены трансформаторные счетчики, осуществляется масштабное преобразование тока с использованием трансформаторов тока, удовлетворяющих требованиям ГОСТ 7746-2001. Счетчики электрической энергии, входящие в состав комплекса учета осуществляют преобразование тока и напряжения с помощью аналогоцифрового преобразователя в цифровые коды, которые перемножаются для вычисления мгновенных значений электрической мощности. Активная электрическая энергия вычисляется путем интегрирования значений мгновенной мощности. В счетчиках, за исключением счетчиков типа «Меркурий 230» интегрирование осуществляется в двух различных регистрах в зависимости от часовой зоны суток. Периоды интегрирования внутри суток для каждого регистра задаются программированием счетчиков. В счетчиках типа «Меркурий 230» интегрирование осуществляется в одном регистре.

УСПД по расписанию, задаваемому при конфигурировании, производит считывание значений электрической энергии, хранящихся в регистрах текущих значений электрической энергии каждого подключенного к нему счетчика. УСПД сохраняет результаты измерений с их привязкой к моменту времени, определяемом в шкале времени часов УСПД. УСПД предоставляет доступ к хранящимся в энергонезависимой памяти результатам измерений по интерфейсам Ethernet или EGSM900 и GSM1800 с использованием протокола SSH и OPC.

Принцип действия комплекса учета при измерении времени заключается в синхронизации часов УСПД со шкалой UTC(SU) по протоколу NTP. В качестве источника точного времени используются часы сервера времени с нормированным значением поправки относительно шкалы времени UTC(SU) не превышающем значения \pm 5 с. УСПД передает команды синхронизации часам счетчиков.

Конструктивно комплекс учета выполнен в виде шкафа УСПД с размещенными в нем УСПД и вспомогательными компонентами, шкафов и щитов учета с размещенными счетчиками электрической энергии. Счетчики трансформаторного включения подключаются к

трансформаторам тока через линии расчетных длины и сечения, чем обеспечивается нормализация нагрузки на вторичную обмотку трансформаторов тока.

Программное обеспечение

Программное обеспечение комплекса учета установлено на УСПД. В состав программного обеспечения УСПД входят: система реального времени контроллера DevLink, служебные программы, драйверы счетчиков электрической энергии. Идентификационные признаки метрологически значимой части программного обеспечения комплекса приведены в таблице 1.

Программное обеспечение комплекса учета обеспечивает выполнение следующих функций:

- считывание результатов измерений электрической энергии со счетчиков электрической энергии с привязкой результатов измерений к шкале времени, хранящейся в часах УСПД;
 - передача часам счетчиков шкалы времени часов УСПД;
 - хранение результатов измерений в базе данных;
 - предоставление доступа к результатам измерений по протоколу SSH и OPC.

Таблица 1 – Идентификационные данные метрологически значимой части программного обеспечения комплекса учета

Наименование	Идентифика-	Номер версии	Цифровой	Алгоритм
программного	ционное	(идентификацион-	идентификатор	вычисления
обеспечения	наименование	ный номер)	программного	цифрового
	программного	программного обес-	обеспечения	идентифика-
	обеспечения	печения		тора
				программного
				обеспечения
Драйвер счетчика			6ce1727ddceb13	
СОЭ 55	/gsw/soe55	-	2d4107fb78aacd	MD5
CO3 33			76b3	
Драйвер счетчика			73a16e93457959	
СЭБ-2А.07Д	/gsw/seb2a	-	ce6c784709c49b	MD5
СЭБ-2А.07Д			392e	
Драйвер счетчиков			02118c88fd2bec	
«Меркурий 230»,	/gsw/merc200	_	d2e1c8651161ed	MD5
«Меркурий 206» и	7 gs W/ III e1 e 2 o o		ae4a	WIDS
«Меркурий 200»				
Драйвер счетчика			d1f42d3d9182c8	
CE 102	/gsw/se102	-	00113ff8fa0aded	MD5
CE 102			52c	
Драйвер счетчика			2a2f7035479f4f0	
МЕ 172	/gsw/iskra	-	98918fde0441df	MD5
1711. 1 / 2			2f3	
Драйвер счетчика			1990f2190a9154	
«Лейне Электро-	/gsw/leine	-	af7e9b8f6699515	MD5
01M»			8f9	

Уровень защиты программного обеспечения по МИ 3286-2010 - «С».

Метрологические и технические характеристики

Классы точности счетчиков в составе комплекса учета при измерении активной электрической энергии 1 или 2 по ГОСТ Р 52322-2005, 0,5S по ГОСТ Р 52323-2005.

Класс точности трансформаторов тока в составе комплекса учета, не хуже 0,5 по ГОСТ 7746-2001.

Таблица 2 – Границы допускаемой относительной погрешности измерительных каналов комплекса учета с трансформаторными счетчиками

І, % от Іном	Коэффициент мощности	Границы относительной погрешности при измерении активной электрической энергии
5	0,5	± 5,6
5	0,8	± 3,3
5	0,865	± 3,0
5	1	± 2,0
20	0,5	± 3,2
20	0,8	± 2,1
20	0,865	± 2,0
20	1	± 1,4
100, 120	0,5	± 2,5
100, 120	0,8	± 1,8
100, 120	0,865	± 1,8
100, 120	1	± 1,3

Предел допускаемого значения поправки часов УСПД относительно шкалы времени UTC(SU) не более, с \pm 5.

- EGSM900 и GSM1800 с использованием технологии передачи данных GPRS;
- Ethernet 100BASE-T.

Условия применения:

- температура окружающего воздуха для измерительных трансформаторов, $^{\circ}\mathrm{C}$ от минус 45 до 40,
 - температура окружающего воздуха для счетчиков, °С от 0 до 40,
 - температура окружающего воздуха для УСПД, °С от минус 20 до 60;

– частота сети, Гц от 49,5 до 50,5.
Допускаемые значения информативных параметров ИК с трансформаторными
счетчиками:
номинальный ток, $I_{\text{ном}}$, A 5;
рабочий ток, $\%$ от $I_{\text{ном}}$ от 5 до 120;
напряжение, % от $U_{\text{ном}}$ от 90 до 110;
коэффициент мощности, $\cos \varphi$
Допускаемые значения информативных параметров ИК со счетчиками
непосредственного включения:
базовый ток, I_{6} , A
максимальный ток, $I_{\text{макс}}$, A
рабочий ток, от 5% I_{δ} до $I_{\text{макс}}$;
напряжение, % от $U_{\text{ном}}$ от 90 до 110;
коэффициент мощности, $\cos \phi$

Знак утверждения типа

Знак утверждения типа наносится на крышку шкафа УСПД и на формуляр.

Комплектность средства измерения

Комплектность комплекса учета приведена в таблице 3.

Таблица 3 – Комплектность комплекса учета

1 аблица 3 – Комплектность комплекса учета				
Наименование	Тип, модификация	Количество		
Устройство сбора и передачи	DevLink	1		
данных				
Трансформаторы тока	по ГОСТ 7746-2001	В соответствии с количеством энергопринимающих устройств потребителей		
Счетчики электрической энергии однофазные	СЕ 102 (Госреестр № 33820-07), СЭБ-2А.07Д (Госреестр № 38396-08), СОЭ-55 (Госреестр № 28267-13), «Меркурий 200» (Госреестр № 24410-07), «Меркурий 206» (Госреестр № 46746-11), «Меркурий 230» (Г.р. 23345-07), МЕ модификации МЕ172 (Госреестр № 46746-11), «Лейне Электро-01М» (Госреестр № 37761-08)	В соответствии с количеством энергопринимающих устройств потребителей		
Счетчик электрической энергии	«Меркурий 230» (Госреестр	В соответствии с		
трехфазный	№ 23345-07)	количеством энергопринимающих устройств потребителей		
Комплекс учета электрической энергии низкого напряжения СЦЭ-DevLink. Методика поверки	СЦЭ.425210.026 Д1	1		

Комплекс учета электрической	СЦЭ.425210.026 ФО	1
энергии низкого напряжения		
СЦЭ-DevLink. Формуляр		

Поверка

осуществляется по документу СЦЭ.425210.026 Д1 Комплекс учета электрической энергии низкого напряжения СЦЭ-DevLink. Методика поверки, утвержденному ФГУП «СНИИМ» в июле 2013 г.

Основное поверочное оборудование: тайм-сервер Φ ГУП «ВНИИ Φ ТРИ» из состава средств передачи эталонных сигналов времени и частоты ГСВЧ (поправка системных часов не более \pm 10 мкс), средства измерений нагрузки на вторичные обмотки трансформаторов тока – по МИ 3196-2009.

Поверка измерительных компонентов комплексов учета проводится в соответствии со следующими нормативными документами по поверке:

- измерительные трансформаторы тока в соответствии с ГОСТ 8.217;
- счетчики электрической энергии СЕ 102 в соответствии с методикой поверки ИНЕС.411152.090Д1, утвержденной руководителем ФГУП «ВНИИМС»;
- счетчики электрической энергии COЭ-55— в соответствии с методикой поверки ПФ2.720.022МП, утвержденной руководителем ФГУП «ВНИИМС»;
- счетчики электрической энергии «Меркурий 200» в соответствии с методикой поверки АВЛГ.411152.020РЭ, утвержденной руководителем ФГУ «Нижегородский ЦСМ»;
- счетчики электрической энергии «Меркурий 206» в соответствии с методикой поверки АВЛГ.411152.032РЭ, утвержденной руководителем ФГУ «Нижегородский ЦСМ»;
- счетчики электрической энергии «Меркурий 230» в соответствии с методикой поверки АВЛГ.411152.021РЭ1, утвержденной руководителем ФГУ «Нижегородский ЦСМ»;
- счетчики электрической энергии СЭБ-2А.07Д в соответствии с методикой поверки ИЛГШ.411152.154РЭ1, утвержденной руководителем ФГУ «Нижегородский ЦСМ»;
- счетчики электрической энергии ME − в соответствии с методикой поверки СЦЭ.411152.002Д1, утвержденной руководителем ФГУП «СНИИМ»;
- счетчики электрической энергии «Лейне Электро-01М» в соответствии с методикой поверки ЦТКА.411152.027МП, утвержденной руководителем ФГУП «ВНИИМС».

Сведения о методиках (методах) измерений

Методика измерений изложена в документе «Методика измерений электрической энергии с использованием комплекса учета электрической энергии низкого напряжения СЦЭ-DevLink». Свидетельство об аттестации методики измерений №175-01.00249-2012 от «16» июля 2013 г.

Нормативные документы, устанавливающие требования к комплексам учета электрической энергии низкого напряжения СЦЭ-DevLink

- 1. ГОСТ Р 8.596-2002. Государственная система обеспечения единства измерений. Метрологическое обеспечение измерительных систем. Основные положения
- 2. ГОСТ Р 52322-2005. Аппаратура для измерения электрической энергии переменного тока. Частные требования. Часть 21. Статические счетчики активной энергии классов точности 1 и 2.
 - 3. ГОСТ 7746-2001. Трансформаторы тока. Общие технические условия.
- 4. СЦЭ.425210.026 Комплекс учета электрической энергии низкого напряжения СЦЭ-DevLink. Типовой проект.

Рекомендации по области применения в сфере государственного регулирования обеспечения единства измерений

Осуществление торговли и товарообменных операций.

Изготовитель

Общество с ограниченной ответственностью «Сервисный центр «Энергия»

Адрес: 141400, Московская Область, г. Химки, улица 3. Космодемьянской, д. 5, пом. 1, тел. (495) 276-23-20

Испытательный центр

Федеральное государственное унитарное предприятие «Сибирский государственный ордена Трудового Красного Знамени научно-исследовательский институт метрологии» (ФГУП «СНИИМ»).

Аттестат аккредитации №30007-09

Адрес: 630004, г. Новосибирск, проспект Димитрова, д. 4., тел. (383)210-08-14, факс (383)2101360; e-mail: director@sniim.nsk.ru

Заместитель руководителя Федерального агентства по техническому регулированию и метрологии

		Ф.В. Булыгин
М.п.	«»	2013 г.