ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Весы вагонные электронные ВЖД

Назначение средства измерений

Весы вагонные электронные ВЖД (далее – весы) предназначены для измерений массы железнодорожных транспортных средств на узкой или широкой колее.

Описание средства измерений

Конструктивно весы состоят из модулей.

Грузоприемное устройство (далее – $\Gamma\Pi Y$), в зависимости от модификации весов, может состоять из одной или двух грузоприемных платформ. Каждая платформа опирается на четыре весо-измерительных тензорезисторных датчика (далее – датчик).

Сигнальные кабели датчиков подключены к электронному весоизмерительному устройству через соединительную коробку.

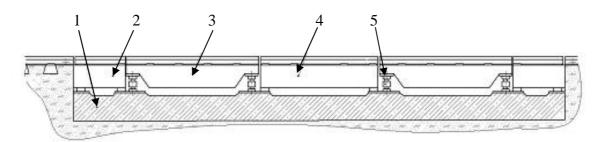


Рисунок 1 – Общий вид ГПУ весов (1 - железобетонный фундамент, 2 - концевая секция ГПУ, 3 - секция ГПУ, 4 - промежуточная секция, 5 – весоизмерительный тензорезисторный датчик)

Преобразователь весоизмерительный КВ-007КП

Преобразователь весоизмерительный KB-007KM

ТВ-003/05Н ТВИ-024 Преобразователи весоизмерительные ТВ

IT-1000

IT-3000A

IT-6000A

IT-8000

IT-3000D

Приборы весоизмерительные автоматические IT

Устройства весоизмерительные СІ

Рисунок 2 – Общий вид электронных весоизмерительных устройств

Принцип действия весов основан на преобразовании деформации упругого элемента весоизмерительного тензорезисторного датчика, возникающей под действием силы тяжести взвешиваемого железнодорожного транспорта, в цифровой или аналоговый электрический сигнал, пропорциональный его массе. Далее этот сигнал обрабатывается. Измеренное значение массы выводится на дисплей электронного весоизмерительного устройства.

Весоизмерительные тензорезисторные датчики, используемые в составе весов:

- датчики весоизмерительные тензорезисторные ZS, NHS, YBS, GZLB, модификации YBS, ZSF, изготовитель фирма «Keli Electric Manufacturing (Ningbo) Co., Ltd.», Китай (Госреестр № 39778-08);
- датчики весоизмерительные тензорезисторные QS, S, LS, D, PST, USB, модификации QS, изготовитель фирма «Keli Electric Manufacturing (Ningbo) Co., Ltd.», Китай (Госреестр № 39774-08);
- датчики весоизмерительные MB 150, изготавитель 3AO «Весоизмерительная компания «Тензо-М», пос.Красково (Госреестр № 44780-10);
- датчики весоизмерительные тензорезисторные M, модификации M70, изготовитель 3AO «Весоизмерительная компания «Тензо-М», пос.Красково (Госреестр № 53673-13);
- датчики весоизмерительные тензорезисторные на сжатие LS, LSC, MNC, WBK, WBS и на изгиб DSB-B, модификация WBK, изготовитель фирма «CAS Corporation Ltd», Республика Корея (Госреестр № 31532-09);
- датчики весоизмерительные тензорезисторные WBK-D, изготовитель фирма «CAS Corporation Ltd», Республика Корея (Госреестр № 54471-13);
- датчики весоизмерительные тензорезисторные С, модификации С16А и С16і, изготовитель фирма «Hottinger Baldwin Messtechnik Gmbh», Германия (Госреестр № 20784-09);
- датчики весоизмерительные сжатия RC3, изготовитель фирма «Flintec GmbH», Германия (Госреестр № 50843-12).

Электронные весоизмерительные устройства представляют результаты взвешивания и имеют клавиши управления весами. При использовании в весах цифровых датчиков электронные весоизмерительные устройства представляют собой терминал (Т.2.2.5 ГОСТ OIML R 76-1–2011). При использовании в весах аналоговых датчиков электронные весоизмерительные устройства представляют собой индикатор (Т.2.2.2 ГОСТ OIML R 76-1–2011).

В качестве индикатора используются:

- приборы весоизмерительные СІ, ВІ, NТ и РОІ, модификации СІ-6000A, СІ-2001A, изготовитель фирма «CAS Corporation», Республика Корея (Госреестр № 50968-12);
- преобразователь весоизмерительный ТВ, модификации ТВИ-024, ТВ-003/05H, изготовитель фирма ЗАО «Весоизмерительная компания «Тензо-М», пос.Красково (Госреестр № 37794-08);
- преобразователь весоизмерительный КВ-007КП и КВ-007КМ, изготовитель ООО «Южно-Уральский Весовой Завод» г. Белорецк;
- приборы весоизмерительные IT, модификации IT-1000, IT-3000A, IT-6000A, IT-8000, изготовитель фирма «SysTec Systemtechnik und Industrieautomation GmbH», Германия (Госреестр № 42010-09).

В качестве терминала используются:

- приборы весоизмерительные IT, модификации IT-3000D, изготовитель фирма «SysTec Systemtechnik und Industrieautomation GmbH», Германия (Сертификат соответствия № S472);
- приборы весоизмерительные CI, NT, модификации CI-200D, CI-201D, NT-580D, CI-600D, изготовитель фирма «CAS Corporation», Республика Корея (Госреестр № 54472 -13).

Общий вид электронных весоизмерительных устройств приведен на рисунке 2.

Весы снабжены следующими устройствами и функциями (в скобках указаны соответствующие пункты Γ OCT OIML R 76-1–2011):

- устройство автоматической и полуавтоматической установки на нуль (Т.2.7.2.2, Т.2.7.2.3.);
- устройство слежения за нулем (Т.2.7.3);
- устройство первоначальной установки на нуль (Т.2.7.2.4);
- устройство уравновешивания тары устройство выборки массы тары (Т.2.7.4.1).

Весы могут быть оснащены интерфейсами RS-232, RS422, RS-485, Ethernet или USB 2.0 для связи с периферийными устройствами (например: принтеры, электронные регистрирующие устройства, вторичный дисплей, ПК).

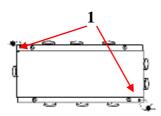
Модификации весов вагонных электронных ВЖД имеют обозначение:

Весы вагонные электронные ВЖД-Н-В, где:

- [H] Максимальная нагрузка (Мах), т. 20; 30; 40; 50; 60; 80; 100; 150; 200;
- [В] Условное обозначение весов во взрывозащищенном исполнении (для весов, выполненных не во взрывозащищенном исполнении, индекс отсутствует).

Значения максимальной нагрузки Мах, минимальной нагрузки Міп, поверочного интервала e наносятся на маркировочную табличку, закрепляемую на ГПУ и индикаторе (терминале) весов.

Места пломбировки от несанкционированного доступа приведены на рисунках 3-4 (1-свинцовая пломба, <math>2- мастичная пломба).



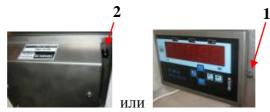
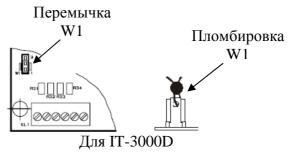


Рисунок 3 — Схема пломбировки соединительной коробки


Приборы весоизмерительные КВ-007КП (слева) и КВ-007КМ (справа приведены два варианта)

Преобразователи весоизмерительные ТВ-003/05Н (возможны два варианта пломбировки)

Для ІТ-1000, ІТ-3000А, ІТ-6000А, ІТ-8000 перемычка устанавливается на плате АЦП

Приборы весоизмерительные IT

Преобразователь весоизмерительный ТВИ-024

Рисунок 4 – Схема пломбировки электронных весоизмерительных устройств

Программное обеспечение

Программное обеспечение (далее $-\Pi O$) весов является встроенным, используется в стационарной (закрепленной) аппаратной части.

Идентификационным признаком ПО служит номер версии, который отображается на дисплее индикатора (терминала) при включении весов, а так же доступен для просмотра через меню (только для весоизмерительных приборов CI).

Защита ПО и измерительной информации от преднамеренных и непреднамеренных воздействий соответствует требованиям ГОСТ OIML R 76-1–2011 п. 5.5.1 «Устройства со встроенным программным обеспечением». ПО не может быть модифицировано или загружено через какойлибо интерфейс или с помощью других средств после принятия защитных мер.

Защита от несанкционированного доступа к настройкам и данным измерений обеспечивается невозможностью изменения ПО без применения специализированного оборудования производителя.

Изменение ПО весов через интерфейс пользователя невозможно.

Кроме того, для защиты от несанкционированного доступа к параметрам юстировки и настройки, а также измерительной информации, используется:

– в индикаторах CI-6000A, CI-2001A, ТВ-003/05H, КВ-007 – переключатель юстировки, расположенный внутри пломбируемого корпуса;

- в терминалах CI-200D, CI-201D, NT-580D, CI-600D переключатель юстировки, расположенный внутри пломбируемого корпуса;
- в преобразователях весоизмерительных ТВИ-024 пароль, ограничивающий доступ к настройкам, и пломбировка корпуса;
- в приборах весоизмерительных IT-3000D переключатель юстировки, расположенный на печатной плате внутри пломбируемого корпуса, а так же пароль ограничивающий доступ к настройкам;
- в приборах весоизмерительных IT-1000, IT-3000A, IT-6000A, IT-8000 переключатель юстировки, расположенный на печатной плате внутри пломбируемого корпуса, а так же пароль ограничивающий доступ к параметрам юстировки.

Уровень защиты от преднамеренных и непреднамеренных воздействий соответствует уровню «С» по МИ 3286-2010. Идентификационные данные ПО приведены в таблице 1.

Таблица 1

Гаолица Г						
Модель	Наименование	Идентификаци-	Номер версии	Цифровой иден-	Алгоритм вы-	
электрон-	программного	онное	(идентификаци-	тификатор про-	числения цифро-	
ного весо-	обеспечения	наименование	онный номер)	граммного обес-	вого идентифи-	
измери-		программного	программного	печения (кон-	катора про-	
тельного		обеспечения	обеспечения	трольная сумма	граммного обес-	
устройства				исполняемого	печения	
				кода)		
CI-6000A	CI-6000 series	Не применяется	1.01, 1.02, 1.03	Не применяется	Не применяется	
CI-0000A	firmware	тте примениется	1.01, 1.02, 1.03	тте примениется		
CI-2001A	CI-2000 series	Не применяется	1.00, 1.01, 1.02	Не применяется	Не применяется	
C1 200171	firmware	тте примениется	1.00, 1.01, 1.02	тте примениется		
CI-200D,	CI-200D series	Не применяется	2.02, 2.03, 2.04,	Не применяется	Не применяется	
CI-201D	firmware	тте примениется	2.05, 2.06	тте примениется		
NT-580D	NT-580D	Не применяется	2.03, 2.04, 2.05,	Не применяется	Не применяется	
N1-360D	firmware	тте применяется	2.06, 2.07	тте применяется	тте примениется	
CI -600D	CI-600D	Не применяется	1.00, 1.01, 1.02,	Не применяется	Не применяется	
C1 000B	firmware	тте примениетел	1.03, 1.04	тте примениется	тте примениется	
КВ-007	Не применяется	Не применяется	U01E, U02E	Не применяется	Не применяется	
ТВИ-024	Не применяется	Не применяется	SC-307, DD-107	Не применяется	Не применяется	
TB-003/05H	Не применяется	Не применяется	C.4.002, C.4.412	Не применяется	Не применяется	
IT-1000	Не применяется	Не применяется	V1. xy 1)	Не применяется	Не применяется	
IT-3000A	Не применяется	Не применяется	V2.xy ¹⁾ , V2.xy ¹⁾	Не применяется	Не применяется	
IT-6000A	Не применяется	Не применяется	V3.y.z ²⁾	Не применяется	Не применяется	
IT-8000	Не применяется	Не применяется	V3.y.z ²⁾	Не применяется	Не применяется	
IT-3000D	Не применяется	Не применяется	V2.xy ¹⁾ , V4.xy ¹⁾	Не применяется	Не применяется	
_						

Примечания:

¹⁾ ху – обозначение номера версии метрологически незначимой части ПО;

 $^{^{2)}}$ у.z – обозначение номера версии метрологически незначимой части ПО.

Метрологические и технические характеристики

Таблица 2

M	Модификация весов									
Метрологическая характеристика	ВЖД-	ВЖД-	ВЖД-	ВЖД-	ВЖД-	ВЖД-	ВЖД-	ВЖД-	ВЖД-	
характеристика	20	30	40	50	60	80	100	150	200	
Класс точности по										
ΓOCT OIML R 76-	III (средний)									
1-2011										
Максимальная на-	20	30	40	50	60	80	100	150	200	
грузка (Мах), т	20	30	40	30	00	80	100	130	200	
Поверочный ин-										
тервал e , и дейст-	0,01	0,01	0,02	0,02	0,02	0,05	0,05	0,05	0,1	
вительная цена де-	0,01	0,01	0,02	0,02	0,02	0,03	0,03	0,03	0,1	
ления d , (e = d), т										
Число поверочных	2000	3000	2000	2500	3000	1600	2000	3000	2000	
интервалов (п)	2000	3000	2000	2300	3000	1000	2000	3000	2000	
Диапазон										
уравновешивания	100 % от Мах									
тары										

Диапазон температуры для ГПУ, °С, от минус 30 до плюс 40.
Диапазон температуры для индикатора (терминала), °С:
– при использовании КВ-007, ТВИ-024 и ТВ-003/05Н от минус 30 до плюс 40;
– при использовании СІ, ІТ от минус 10 до плюс 40;
– при использовании CI-200D, CI-201D, NT-580D, CI-600D от минус 10 до плюс 40.
Параметры электропитания от сети переменного тока:
напряжение, В
частота, Гц50±1.
Параметры электропитания от сети постоянного тока (аккумуляторной батареи):
напряжение В

Знак утверждения типа

Знак утверждения типа наносится на маркировочные таблички, расположенные на индикаторе (терминале) и на корпусе ГПУ весов и типографским способом на титульные листы эксплуатационной документации.

Комплектность средства измерений

Весы
Руководство по эксплуатации. Паспорт
Руководство по эксплуатации. Паспорт на электронное весоизмерительное устройство

1 шт.
1 экз.
1 экз.

Поверка

осуществляется в соответствии с приложением ДА «Методика поверки весов» ГОСТ ОІМL R 76-1 – 2011 «Весы неавтоматического действия. Часть 1. Метрологические и технические требования. Испытания».

Идентификационные данные, а также процедура идентификации программного обеспечения приведены в руководстве по эксплуатации № РЭ 4274-005-15285126-12.

Основные средства поверки: гири, соответствующие классу точности M_1 , $M_{1\text{-}2}$ по ГОСТ OIML R 111-1 – 2009.

Сведения о методиках (методах) измерений

Раздел 8 «Порядок работы» документа «Весы вагонные электронные ВЖД. Руководство по эксплуатации. Паспорт».

Нормативные и технические документы, устанавливающие требования к весам вагонным электронным ВЖД

- 1. ГОСТ OIML R 76-1-2011 «Весы неавтоматического действия. Часть 1. Метрологические и технические требования. Испытания».
- 2. ГОСТ 8.021-2005 «Государственная система обеспечения единства измерений. Государственная поверочная схема для средств измерений массы».
 - 3. ТУ4274-005-15285126-12 «Весы вагонные электронные ВЖД»

Рекомендации по областям применения в сфере государственного регулирования обеспечения единства измерений

Осуществление торговли и товарообменных операций.

Изготовитель

Общество с ограниченной ответственностью «Южно-Уральский Весовой Завод» (ООО «ЮУВЗ»)

Юридический адрес: 450022, Россия, Республика Башкортостан, г. Уфа, ул. Менделеева, 134.

Фактический адрес: 453500, Республика Башкортостан, г. Белорецк, ул. Мост БЖД, 88/1 Адрес отправки корреспонденции: 453501, Республика Башкортостан, г. Белорецк, ул. Крупской, 51

Тел. /факс +7(34792)4-71-08, 4-71-09

E-mail: ptmb05@mail.ru;

Испытательный центр

Федеральное государственное унитарное предприятие «Всероссийский научно-исследовательский институт метрологической службы» (ФГУП «ВНИИМС»)

Адрес: 119361, г. Москва, ул. Озерная, д.46

Тел./факс: (495)437-55-77 / 437-56-66; E-mail: office@vniims.ru, www.vniims.ru

Аттестат аккредитации ФГУП «ВНИИМС» по проведению испытаний средств измерений в целях утверждения типа № 30004-13 от 26.07.2013 г.

Заместитель Руководителя Федерального агентства по техническому регулированию и метрологии

Ф.В. Булыгин

М.п. « » 2013 г.