ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Система автоматизированная информационно-измерительная коммерческого учета электроэнергии (АИИС КУЭ) тяговых подстанций Юго-Восточной ЖД - филиала ОАО «Российские Железные Дороги» в границах Белгородской области

Назначение средства измерений

Система автоматизированная информационно-измерительная коммерческого учета электроэнергии (АИИС КУЭ) тяговых подстанций Юго-Восточной ЖД — филиала ОАО «Российские Железные Дороги» в границах Белгородской области (далее по тексту - АИИС КУЭ) предназначена для измерения активной и реактивной электроэнергии, сбора, обработки, хранения и передачи полученной информации.

Описание средства измерений

АИИС КУЭ представляет собой многофункциональную трехуровневую автоматизированную систему с централизованным управлением и распределённой функцией измерения.

Измерительные каналы (далее по тексту - ИК) АИИС КУЭ включают в себя следующие уровни:

1-ый уровень - включает в себя измерительные трансформаторы тока (далее по тексту - TT) класса точности 0,2S и 0,5 по ГОСТ 7746-2001, измерительные трансформаторы напряжения (далее по тексту - TH) класса точности 0,5 по ГОСТ 1983-2001, счетчики активной и реактивной электроэнергии типа «Альфа Плюс» класса точности 0,5S (в части активной электроэнергии по ГОСТ 30206-94), класса точности 1,0 (в части реактивной электроэнергии по ГОСТ 26035-83) типа «ЕвроАльфа» класса точности 0,2S и 0,5S (в части активной электроэнергии по ГОСТ 30206-94), класса точности 0,5 (в части реактивной электроэнергии по ГОСТ 26035-83), вторичные измерительные цепи и технические средства приема-передачи данных;

2-ой уровень — измерительно-вычислительный комплекс регионального Центра энергоучёта, реализован на базе устройства сбора и передачи данных (УСПД RTU-327, Госреестр № 41907-09, зав. № 000777), выполняющего функции сбора, хранения результатов измерений и передачи их на уровень ИВК, и содержит программное обеспечение (далее — ПО) «АльфаЦЕНТР», с помощью которого решаются задачи коммерческого многотарифного учета расхода и прихода электроэнергии в течение заданного интервала времени, измерения средних мощностей на заданных интервалах времени, мониторинга нагрузок заданных объектов;

3-ий уровень – измерительно-вычислительный комплекс Центра сбора данных АИИС КУЭ (далее – ИВК) включает в себя: серверное оборудование (серверы сбора данных – основной и резервный, сервер управления), каналы сбора данных с уровня регионального Центра энергоучёта, каналы передачи данных субъектам оптового рынка электроэнергии и мощности (ОРЭМ).

Первичные токи и напряжения преобразуются измерительными трансформаторами в аналоговые унифицированные сигналы, которые по проводным линиям связи поступают на измерительные входы счетчиков электроэнергии. В счетчиках мгновенные значения аналоговых сигналов преобразуются в цифровые сигналы. По мгновенным значениям силы электрического тока и напряжения в микропроцессорах счетчиков вычисляются соответствующие мгновенные значения активной, реактивной и полной мощности без учета коэффициентов трансформации, которые усредняются за 0,02 с. Средняя за период

реактивная мощность вычисляется по средним за период значениям активной и полной мощности.

Средняя активная (реактивная) электрическая мощность вычисляется как среднее значение вычисленных мгновенных значений мощности на интервале времени усреднения 30 мин.

Цифровой сигнал с выходов счетчиков при помощи технических средств приемапередачи данных поступает на входы УСПД, где производится обработка измерительной информации (умножение на коэффициенты трансформации), сбор и хранение результатов измерений. Далее информация поступает на ИВК Центра сбора данных АИИС КУЭ.

АИИС КУЭ оснащена системой обеспечения единого времени (СОЕВ). Для синхронизации времени в системе в состав ИВК входит устройство синхронизации времени (УСВ) на основе приемника GPS типа УССВ-35LVS (35HVS). УСВ обеспечивает автоматическую синхронизацию часов сервера, при превышении порога (рассинхронизаци) \pm 1с происходит коррекция часов сервера. Часы УСПД синхронизируются при каждом сеансе связи УСПД - сервер, коррекция проводится при расхождении часов УСПД и сервера на значение, превышающее \pm 1с. Часы счетчиков синхронизируются от часов УСПД с периодичностью 1 раз в 30 минут, коррекция часов счетчиков проводится при расхождении часов счетчиков и УСПД более чем на \pm 1 с. Взаимодействие между уровнями АИИС КУЭ осуществляется по протоколу NTP по оптоволоконной связи, задержками в линиях связи пренебрегаем ввиду малости значений. Поправка часов счетчиков согласно описанию типа \pm 0,5 с, а с учетом температурной составляющей – \pm 1,5 с.

Ход часов компонентов АИИС КУЭ не превышает ± 5 с/сут

Программное обеспечение

Уровень ИВК Центра сбора данных содержит ПО "ЭНЕРГИЯ-АЛЬФА", включающее в себя модуль "Энергия Альфа 2". С помощью ПО "ЭНЕРГИЯ-АЛЬФА" решаются задачи автоматического накопления, обработки, хранения и отображения измерительной информации. Уровень регионального Центра энергоучета содержит ПО "АльфаЦЕНТР", включающее в себя модули " АльфаЦЕНТР АРМ", " АльфаЦЕНТР СУБД "Oracle", " АльфаЦЕНТР Коммуникатор". С помощью ПО "АльфаЦЕНТР" решаются задачи коммерческого многотарифного учета расхода и прихода электроэнергии в течение заданного интервала времени, измерения средних мощностей на заданных интервалах времени, мониторинга нагрузок заданных объектов.

Таблица 1 - Сведения о программном обеспечении

Идентификационн ое наименование ПО	Номер версии (идентификацион ный номер) ПО	Цифровой идентификатор ПО (контрольная сумма исполняемого кода)	Идентификационное наименование файла ПО	Алгоритм вычисления цифрового идентификато ра ПО
1	2	3	4	5
"АльфаЦЕНТР"	4	a65bae8d7150931f8 11cfbc6e4c7189d	"АльфаЦЕНТР АРМ"	MD5
"АльфаЦЕНТР"	9	bb640e93f359bab15 a02979e24d5ed48	"АльфаЦЕНТР СУБД "Oracle""	MD5
"АльфаЦЕНТР"	3	3ef7fb23cf160f5660 21bf19264ca8d6	"АльфаЦЕНТР Коммуникатор"	MD5
"ЭНЕРГИЯ- АЛЬФА"	2.0.0.2	17e63d59939159ef3 04b8ff63121df60	"Энергия Альфа 2"	MD5

Предел допускаемой дополнительной абсолютной погрешности, получаемой за счет математической обработки измерительной информации, составляет 1 единицу младшего разряда измеренного (учтенного) значения.

Метрологические характеристики ИИК АИИС КУЭ, указанные в таблицах 3, 4 нормированы с учетом ПО.

Уровень защиты ΠO от непреднамеренных и преднамеренных изменений – уровень «С» по МИ 3286-2010

Метрологические и технические характеристики

Состав 1-го и 2-го уровней ИК АИИС КУЭ приведен в таблице 2.

Таблица 2 - Состав 1-го и 2-го уровней ИК АИИС КУЭ

			Состав 1-го и 2-го уровне	й ИК АИИС КУЭ		
ИК ИК	Диспетчерское наименование точки учёта	Трансформатор тока	Трансформатор напряжения	Счётчик трёхфазный переменного тока активной/реактивной энергии	УСПД	Вид электроэнергии
1	2	3	4	5	6	7
			ТП «Беломестное»			
1	Ф - 4 10 кВ точка измерения № 1	ТЛО-10 класс точности 0,2S Ктт=200/5 Зав. № 10160; 9260; 10168 Госреестр № 25433-03	ЗНОЛ.06 класс точности 0,5 Ктн=10000/√3/100/√3 Зав. № 4951; 4912; 4572 Госреестр № 3344-04	А2R-4-AL-C29-T+ класс точности 0,5S/1,0 Зав. № 01100003 Госреестр № 14555-02	RTU-327 3ab. № 000777	активная реактивная
2	Ф - 2 10 кВ точка измерения № 2	ТЛО-10 класс точности 0,2S; Ктт=200/5; Зав. № 10155; 9272; 10157 Госреестр № 25433-03;	3НОЛ.06 класс точности 0,5 Ктн=10000/√3/100/√3 Зав. № 4951; 4912; 4572 Госреестр № 3344-04	A2R-4-AL-C29-T+ класс точности 0,5S/1,0 Зав. № 01100113 Госреестр № 14555-02	Госреестр № 41907-09	активная реактивная

Продолжение таблицы 2

1	лжение таолицы <i>2</i>	3	4	5	6	7	
3	Ф - 1 10 кВ точка измерения № 3	ТЛО-10 класс точности 0,2S Ктт=200/5 Зав. № 7052; 7053; 7047 Госреестр № 25433-03	3НОЛ.06 класс точности 0,5 Ктн=10000/√3/100/√3 Зав. № 9002; 4591; 7084 Госреестр № 3344-04	A2R-4-AL-C29-T+ класс точности 0,5S/1,0 Зав. № 01100052 Госреестр № 14555-02	RTU-327 зав. № 000777 Госреестр № 41907-09	активная реактивная	
			ТП «Долбино»				
4	Ф - 4 10 кВ точка измерения № 4	ТЛО-10 класс точности 0,2S Ктт=200/5 Зав. № 7054; 9220; 7048 Госреестр № 25433-03	ЗНОЛ.06 класс точности 0,5 Ктн=10000/√3/100/√3 Зав. № 18707; 4927; 2782 Госреестр № 3344-04	EA02RAL-B-4 класс точности 0,2S/0,5 Зав. № 01100264 Госреестр № 16666-97	RTU-327 зав. № 000777 Госреестр	активная реактивная	
5	Ф - 3 10 кВ точка измерения № 5	ТЛО-10 класс точности 0,2S Ктт=200/5 Зав. № 7051; 9211; 7046 Госреестр № 25433-03	3НОЛ.06 класс точности 0,5 Ктн=10000/√3/100/√3 Зав. № 20242; 4612; 8048 Госреестр № 3344-04	EA02RAL-B-4 класс точности 0,2S/0,5 Зав. № 01100220 Госреестр № 16666-97	№ 41907-09	активная реактивная	
			ТП «Сажное»				
6	Ф – РП - 1 10 кВ точка измерения № 6	ТЛО-10 класс точности 0,2S Ктт=200/5 Зав. № 10162; 10960; 7238 Госреестр № 25433-03	НАМИ-10 класс точности 0,5 Ктн=10000/√3/100/√3 Зав. № 4761; 4761; 4761 Госреестр № 11094-87	EA02RAL-B-4 класс точности 0,2S/0,5 Зав. № 01100210 Госреестр № 16666-97	RTU-327 зав. № 000777 Госреестр № 41907-09	активная реактивная	
	ТП «Прохоровка»						
7	Ф - ВЛ2 10 кВ точка измерения № 7	ТЛО-10 класс точности 0,2S Ктт=200/5 Зав. № 10164; 10163; 10171 Госреестр № 25433-03	НАМИ-10 класс точности 0,5 Ктн=10000/√3/100/√3 Зав. № 6096; 6096; 6096 Госреестр № 11094-87	A2R-4-AL-C29-T+ класс точности 0,5S/1,0 Зав. № 01100095 Госреестр № 14555-02	RTU-327 зав. № 000777 Госреестр № 41907-09	активная реактивная	

Продолжение таблицы 2

1	2	3	4	5	6	7
8	Ф - ВЛ8 10 кВ точка измерения № 8	ТЛО-10 класс точности 0,2S Ктт=200/5 Зав. № 7055; 7049; 7050 Госреестр № 25433-03	НАМИ-10 класс точности 0,5 Ктн=10000/√3/100/√3 Зав. № 6108; 6108; 6108 Госреестр № 11094-87	A2R-4-AL-C29-T+ класс точности 0,5S/1,0 Зав. № 01100046 Госреестр № 14555-02	RTU-327 зав. № 000777 Госреестр № 41907-09	активная реактивная
			ТП «Палатовка»			
9	Ф - 8 10 кВ точка измерения № 9	ТЛО-10 класс точности 0,2S Ктт=100/5 Зав. № 2698; 10095; 2747 Госреестр № 25433-03	3НОЛ.06 класс точности 0,5 Ктн=10000/√3/100/√3 Зав. № 16714; 16902; 9736 Госреестр № 3344-04	EA05L-P2B-3 класс точности 0,5S/- Зав. № 01085477 Госреестр № 16666-97		активная
10	Ф - 7 10 кВ точка измерения № 10	ТЛО-10 класс точности 0,2S Ктт=150/5 Зав. № 9397; 9401; 9399 Госреестр № 25433-03	3НОЛ.06 класс точности 0,5 Ктн=10000/√3/100/√3 Зав. № 1413; 18129; 9628 Госреестр № 3344-04	EA05L-P2B-3 класс точности 0,5S/- Зав. № 01085546 Госреестр № 16666-97	RTU-327 3ab. № 000777	активная
11	Ф - 6 10 кВ точка измерения № 11	ТЛО-10 класс точности 0,2S Ктт=100/5 Зав. № 12820; 10096; 15805 Госреестр № 25433-03	ЗНОЛ.06 класс точности 0,5 Ктн=10000/√3/100/√3 Зав. № 1413; 18129; 9628 Госреестр № 3344-04	EA05L-P2B-3 класс точности 0,5S/- Зав. № 01085426 Госреестр № 16666-97	Госреестр № 41907-09	активная
12	Ф - 5 10 кВ точка измерения № 12	ТПОЛ-10 класс точности 0,5 Ктт=800/5 Зав. № 8009; 9595 Госреестр № 1261-02	3НОЛ.06 класс точности 0,5 Ктн=10000/√3/100/√3 Зав. № 16714; 16902; 9736 Госреестр № 3344-04	EA05L-P2B-3 класс точности 0,5S/- Зав. № 01085512 Госреестр № 16666-97		активная

Продолжение таблицы 2

1	2	3	4	5	6	7
13	Ф - 3 10 кВ точка измерения № 13	ТЛО-10 класс точности 0,2S Ктт=300/5 Зав. № 4212; 4213; 4211 Госреестр № 25433-03	3НОЛ.06 класс точности 0,5 Ктн=10000/√3/100/√3 Зав. № 16714; 16902; 9736 Госреестр № 3344-04	EA05L-P2B-3 класс точности 0,5S/- Зав. № 01085470 Госреестр № 16666-97		активная
14	Ф - 2 10 кВ точка измерения № 14	ТЛО-10 класс точности 0,2S Ктт=100/5 Зав. № 2729; 2744; 2670 Госреестр № 25433-03	3НОЛ.06 класс точности 0,5 Ктн=10000/√3/100/√3 Зав. № 1413; 18129; 9628 Госреестр № 3344-04	EA05L-P2B-3 класс точности 0,5S/- Зав. № 01085352 Госреестр № 16666-97	RTU-327 зав. № 000777 Госреестр № 41907-09	активная
15	Ф - 1 10 кВ точка измерения № 15	ТЛО-10 класс точности 0,2S Ктт=75/5 Зав. № 5787; 5782; 5790 Госреестр № 25433-03	3НОЛ.06 класс точности 0,5 Ктн=10000/√3/100/√3 Зав. № 1413; 18129; 9628 Госреестр № 3344-04	EA05L-P2B-3 класс точности 0,5S/- Зав. № 01085355 Госреестр № 16666-97		активная

Таблица 3 - Метрологические характеристики ИК (активная энергия)

Поторы		Пределы допускаемой относительной погрешности ИК															
Номер ИК	Диапазон значений силы тока	Основная относительная погрешность ИК, $(\pm \delta)$, %				Относительная погрешность ИК в рабочих условиях эксплуатации, $(\pm \delta)$, %											
		cos φ =	cos	σ =	cos φ =	cos φ	COS		$\cos \varphi =$								
		1,0	0,3		0,8	= 1,0	0,8		0,8								
1	2	3	4	1	5	6	7	'	8								
1 - 3	$0.01(0.02) I_{H_1} \le I_1 < 0.05 I_{H_1}$	1,5	1,	,6	1,7	1,9	2,	0	2,1								
(TT 0,2S; TH 0,5;	$0.05I_{H_1} \le I_1 < 0.2I_{H_1}$	0,9	1,	,1	1,2	1,5	1,	6	1,7								
Сч 0,5S)	$0,2I_{H_1} \le I_1 < I_{H_1}$	0,9	1,	,0	1,0	1,5	1,	6	1,6								
C 1 0,35)	$I_{H_1} \le I_1 \le 1,2I_{H_1}$	0,9	1,	,0	1,0	1,5	1,	6	1,6								
4 - 6	$0.01(0.02)$ IH ₁ \leq I ₁ $<$ 0.05 IH ₁	1,1	1,	,2	1,3	1,3	1,	3	1,5								
(TT 0,2S; TH 0,5;	$0.05I_{H_1} \le I_1 < 0.2I_{H_1}$	0,8	0,	,9	1,0	1,0	1,	1	1,2								
Сч 0,2S)	$0,2I_{H_1} \le I_1 < I_{H_1}$	0,7	0,	,8	0,9	0,9	1,	0	1,1								
C 1 0,25)	$I_{H_1} \le I_1 \le 1,2I_{H_1}$	0,7	0,	,8	0,9	0,9	1,	0	1,1								
7, 8	$0.01(0.02)$ IH ₁ \leq I ₁ $<$ 0.05 IH ₁	1,5	1,	,6	1,7	1,9	2,	0	2,1								
(TT 0,2S; TH 0,5;	$0.05I_{H_1} \le I_1 < 0.2I_{H_1}$	0,9	1,	,1	1,2	1,5	1,	6	1,7								
Сч 0,5S)	$0.2I_{H_1} \le I_1 < I_{H_1}$	0,9	1,	,0,	1,0	1,5	1,	6	1,6								
C 1 0,35)	$I_{H_1} \le I_1 \le 1,2I_{H_1}$	0,9	1,	,0	1,0	1,5	1,	6	1,6								
	Для ИК со счё																
		Предел	ы до	пуска	аемой отн ИІ		ой по	грег	шности								
Номер ИК	Диапазон значений силы тока	силы тока погрешность ИК, $(\pm \delta)$, %			Относительная погрешность ИК в рабочих условиях эксплуатации, $(\pm \delta)$, %			ИК в виях									
		$\cos \varphi = 1$	1,0	cos	$\varphi = 0.5$	$\cos \phi =$	1,0	cos	$s \varphi = 0.5$								
9 - 11, 13 - 15	$0.01(0.02)I_{H_1} \le I_1 < 0.05I_{H_1}$	1,5			2,3	1,9			2,7								
(TT 0,2S; TH 0,5;	$0.05IH_1 \le I_1 < 0.2IH_1$	0,9			1,9	1,5			2,3								
Сч 0,5S)	1 0.01 m < 1.21 m				1,5	1,5		2,0									
	$I_{H_1} \le I_1 \le 1,2I_{H_1}$	0,9			1,5	1,5			2,0								
12	$0.05I_{\rm H_1} \le I_1 < 0.2I_{\rm H_1}$	1,8			5,5	2,2			5,7								
(TT 0.5, TH 0.5, C	$0.2I_{H_1} \le I_1 < I_{H_1}$	1,2			3,0	1,7			3,3								
(TT 0,5; TH 0,5; Сч 0,5S)	$I_{H_1} \le I_1 \le 1,2I_{H_1}$	1,0		1,0		1,0				1,0			2,3	1,5			2,6

Таблица 4 - Метрологические характеристики ИК (реактивная энергия)

	in recinie napaniepnen	Пределы допускаемой относительной погрешности					
		1 1					
		ИК					
				Относи	тельная		
Harram MIV	Диапазон значений	Основная от	носительная	погрешно	ость ИК в		
Номер ИК	силы тока	погрешности	ь ИК, $(\pm d)$, %	рабочих	условиях		
		•		эксплуатац	ии, (± d), %		
		$\cos \varphi = 0.87$	$\cos \varphi = 0.8$	$\cos \varphi = 0.87$	$\cos \varphi = 0.8$		
		$(\sin \varphi = 0.5)$	$(\sin \varphi = 0.6)$	$(\sin \varphi = 0.5)$	$(\sin \varphi = 0.6)$		
1	2	3	4	5	6		
1 - 3	$0.02I_{\rm H_1} \le I_1 < 0.05I_{\rm H_1}$	4,0	3,5	5,9	5,1		
(TT 0,2S; TH 0,5;	$0.05I_{H_1} \le I_1 < 0.2I_{H_1}$	2,5	2,2	3,5	3,1		
Сч 1,0)	$0,2I_{H_1} \le I_1 < I_{H_1}$	1,9	1,7	2,4	2,2		
C 1 1,0)	$I_{H_1} \le I_1 \le 1,2I_{H_1}$	1,8	1,6	2,2	2,1		
4 - 6	$0.02I_{\rm H_1} \le I_1 < 0.05I_{\rm H_1}$	2,7	2,3	3,4	2,9		
(TT 0,2S; TH 0,5;	$0.05I_{\rm H_1} \le I_1 < 0.2I_{\rm H_1}$	1,9	1,6	2,2	1,9		
Сч 0,5)	$0.2I_{H_1} \le I_1 < I_{H_1}$	1,5	1,3	1,7	1,5		
C10,3)	$I_{H_1} \le I_1 \le 1,2I_{H_1}$	1,5	1,3	1,7	1,4		
7, 8	8 $0.02I_{H_1} \le I_1 < 0.05I_{H_1}$		3,5	5,9	5,1		
(TT 0,2S; TH 0,5;	$0.05I_{H_1} \le I_1 < 0.2I_{H_1}$	2,5	2,2	3,5	3,1		
Сч 1)	$0,2I_{H_1} \le I_1 < I_{H_1}$	1,9	1,7	2,4	2,2		
C4 1)	$I_{H_1} \le I_1 \le 1,2I_{H_1}$	1,8	1,6	2,2	2,1		

Примечания:

- 1. Погрешность измерений $\delta_{1(2)\%P}$ и $\delta_{1(2)\%Q}$ для $\cos\phi$ =1,0 нормируется от $I_{1\%}$, а погрешность измерений $\delta_{1(2)\%P}$ и $\delta_{1(2)\%Q}$ для $\cos\phi$ <1,0 нормируется от $I_{2\%}$..
- 2. Характеристики относительной погрешности ИК даны для измерения электроэнергии и средней мощности (30 мин.).
- 3. В качестве характеристик относительной погрешности указаны границы интервала, соответствующие вероятности 0,95;
- 4. Нормальные условия эксплуатации:
 - параметры сети: диапазон напряжения от $0.98 \cdot \text{U}$ ном до $1.02 \cdot \text{U}$ ном; диапазон силы тока от Іном до $1.2 \cdot \text{I}$ ном, $\cos \varphi = 0.9$ инд; частота (50 ± 0.15) Γ ц;
 - температура окружающего воздуха: ТТ и ТН от минус 40°C до плюс 50°C; счетчиков
 от плюс 18°C до плюс 25°C; ИВКЭ от плюс 10°C до плюс 30°C; ИВК от плюс 10°C до плюс 30°C;
 - магнитная индукция внешнего происхождения, не более 0,05 мТл.
- 5. Рабочие условия эксплуатации:

Для TT и TH:

- параметры сети: диапазон первичного напряжения от $0.9 \cdot \text{Uh1}$ до $1.1 \cdot \text{Uh1}$; диапазон силы первичного тока от $0.01 \cdot \text{Ih1}$ до $1.2 \cdot \text{Ih1}$; частота $(50 \pm 0.4) \cdot \text{Гц}$;
- температура окружающего воздуха от минус 30°C до плюс 35°C.

Для счетчиков электроэнергии «Альфа Плюс», «ЕвроАльфа»:

- параметры сети: диапазон вторичного напряжения - от $0.9 \cdot \text{UH}_2$ до $1.1 \cdot \text{UH}_2$; диапазон силы вторичного тока - от $0.01 \cdot \text{IH}_2$ до $1.2 \cdot \text{IH}_2$; частота - $(50 \pm 0.4) \Gamma \text{II}$;

- температура окружающего воздуха от 10 °C до 30 °C;
- магнитная индукция внешнего происхождения, не более 0,5 мТл.
- 6. Допускается замена измерительных трансформаторов и счетчиков на аналогичные утвержденных типов с метрологическими характеристиками не хуже, чем у перечисленных в таблице 2.

Параметры надежности применяемых в АИИС КУЭ измерительных компонентов:

- в качестве показателей надежности измерительных трансформаторов тока и напряжения, в соответствии с ГОСТ 1983-2001 и ГОСТ 7746-2001, определены средний срок службы и средняя наработка на отказ;
- счетчик среднее время наработки на отказ не менее 50000 часов, среднее время восстановления работоспособности 48 часов;
- УСПД среднее время наработки на отказ не менее 40000 часов, среднее время восстановления работоспособности 1 час.
- УССВ-35HVS среднее время наработки на отказ не менее 35000 часов;
- ИВК среднее время наработки на отказ не менее 70000 часов;

Надежность системных решений:

- резервирование питания УСПД с помощью источника бесперебойного питания и устройства ABP;
- резервирование каналов связи: информация о результатах измерений может передаваться с помощью электронной почты и сотовой связи;
- в журналах событий счетчика и УСПД фиксируются факты:
 - параметрирования;
 - пропадания напряжения;
 - коррекция времени.

Защищенность применяемых компонентов:

- наличие механической защиты от несанкционированного доступа и пломбирование:
 - счетчика;
 - промежуточных клеммников вторичных цепей напряжения;
 - испытательной коробки;
 - УСПД.
- наличие защиты на программном уровне:
 - пароль на счетчике;
 - пароль на УСПД;
- пароли на сервере, предусматривающие разграничение прав доступа к измерительным данным для различных групп пользователей.

Возможность коррекции времени в:

- счетчиках (функция автоматизирована);
- УСПД (функция автоматизирована).

Глубина хранения информации:

- электросчетчик тридцатиминутный профиль нагрузки в двух направлениях при отключении питания до 5 лет;
- ИВК суточные данные о тридцатиминутных приращениях электропотребления по каждому каналу и электропотребление за месяц по каждому каналу не менее 35 суток; при отключении питания не менее 3 лет.

Знак утверждения типа

Знак утверждения типа наносится на титульные листы эксплуатационной документации на систему автоматизированную информационно-измерительную коммерческого учёта электроэнергии (АИИС КУЭ) тяговой подстанции Юго-Восточной ЖД — филиала ОАО «Российские Железные Дороги» в границах Белгородской области типографским способом.

Комплектность средства измерений

В комплект поставки входит техническая документация на систему и на комплектующие средства измерений.

Комплектность АИИС КУЭ представлена в таблице 5.

Таблица 5 - Комплектность АИИС КУЭ

Наименование	Кол-во, шт.
Трансформаторы тока ТЛО-10	10
Трансформаторы тока ТЛО-10	32
Трансформаторы тока ТПОЛ-10	2
Трансформаторы напряжения ЗНОЛ.06	36
Трансформаторы напряжения НАМИ-10	9
УСПД типа RTU-327	1
Счётчики электроэнергии многофункциональные типа Альфа	5
Счётчики электрической энергии многофункциональные	10
ЕвроАльфа	10
Сервер управления HP ML 360 G5	1
Сервер основной БД HP ML 570 G4	1
Сервер резервный БД HP ML 570 G4	1
Методика поверки	1
Формуляр	1
Инструкция по эксплуатации	1

Поверка

осуществляется по документу МП 1702/500-2013 "Система автоматизированная информационно-измерительная коммерческого учета электроэнергии (АИИС КУЭ) тяговой подстанции Юго-Восточной ЖД - филиала ОАО «Российские Железные Дороги» в границах Белгородской области». Методика поверки", утвержденному ГЦИ СИ ФБУ "Ростест-Москва" 11.10.2013 г.

Перечень основных средств поверки:

- трансформаторов тока в соответствии с ГОСТ 8.217-2003 «ГСИ. Трансформаторы тока. Методика поверки»;
- трансформаторов напряжения в соответствии с ГОСТ 8.216-2011 «ГСИ. Трансформаторы напряжения. Методика поверки» и/или МИ 2925-2005 «Измерительные трансформаторы напряжения 35...330/√3 кВ. Методика поверки на месте эксплуатации с помощью эталонного делителя»;

- средства измерений по МИ 3195-2009 «ГСИ. Мощность нагрузки трансформаторов напряжения. Методика выполнения измерений без отключения цепей».
- средства измерений МИ 3196-2009 «ГСИ. Вторичная нагрузка трансформаторов тока. Методика выполнения измерений без отключения цепей»;
- счетчиков «Альфа Плюс» по документу «Многофункциональные счётчики электрической энергии типа АЛЬФА. Методика поверки», утверждённому ВНИИМ им. Д.И. Менделеева
- «ЕвроАльфа» по документу «Многофункциональный многопроцессорный счётчик электрической энергии типа ЕвроАЛЬФА (ЕА). Методика поверки ДЯИМ.411152.018 МП», утвержденному ГЦИ СИ ФГУП «ВНИИМС» в 2011 г.;
- для УСПД RTU-327 по документу «Устройства сбора и передачи данных серии 1ЧТ1-327.Методика поверки. ДЯИМ.466215.007 МП», утвержденному ГЦИ СИ ФГУП «ВНИИМС» в 2009 г.;
- радиочасы МИР РЧ-01, принимающие сигналы спутниковой навигационной системы Global Positioning System (GPS), номер в Государственном реестре средств измерений № 27008-04;
- переносной компьютер с ПО и оптический преобразователь для работы с счетчиками системы и с ПО для работы с радиочасами МИР РЧ-01.

Сведения о методиках (методах) измерений

Метод измерений изложен в документе «Руководство по эксплуатации системы автоматизированной информационно-измерительной коммерческого учета электроэнергии (АИИС КУЭ) тяговых подстанций Юго-Восточной ЖД — филиала ОАО «Российские Железные Дороги» в границах Белгородской области.

Нормативные и технические документы, устанавливающие требования к системе автоматизированной информационно-измерительной коммерческого учета электроэнергии (АИИС КУЭ) тяговых подстанций Юго-Восточной ЖД – филиала ОАО «Российские Железные Дороги» в границах Белгородской области

- 1. ГОСТ 22261-94 «Средства измерений электрических и магнитных величин. Общие технические условия».
- 2. ГОСТ 34.601-90 «Информационная технология. Комплекс стандартов на автоматизированные системы. Автоматизированные системы. Стадии создания».
- 3. ГОСТ Р 8.596-2002 «ГСИ. Метрологическое обеспечение измерительных систем. Основные положения».
- 4. ГОСТ 7746-2001 «Трансформаторы тока. Общие технические условия».
- 5. ГОСТ 1983-2001 «Трансформаторы напряжения. Общие технические условия».
- 6. АУВП.411711.900.ЭД.ИЭ «Инструкция по эксплуатации системы автоматизированной информационно-измерительной коммерческого учета электроэнергии тяговых подстанций в границах ОАО «Белгородэнерго» Юго-Восточной железной дороги».
- 7. ТУ 4228-011-29056091-11 «Счетчики электрической энергии трехфазные многофункциональные Альфа A1800. Технические условия».

Рекомендации по областям применения в сфере государственного регулирования обеспечения единства измерений

- при осуществлении торговли и товарообменных операций.

Изготовитель

Открытое акционерное общество «Российские Железные Дороги»

(«РЖД»)

Юридический адрес: 107174, г. Москва, Новая Басманная ул., д.2

Тел.: (499) 262-60-55 Факс: (499) 262-60-55 e-mail: <u>info@rzd.ru</u> http://www.rzd.ru/

Заявитель

Общество с ограниченной ответственностью «Инженерный центр

«ЭНЕРГОАУДИТКОНТРОЛЬ» (ООО «ИЦ ЭАК»)

Юридический адрес: 123007, г. Москва, ул. 1-ая Магистральная, д. 17/1, стр. 4

Тел.: (495) 620-08-38 Факс: (495) 620-08-48

Испытательный центр

Федеральное бюджетное учреждение «Государственный региональный центр стандартизации, метрологии и испытаний в г. Москва» (ФБУ «Ростест-Москва»)

Юридический адрес: 117418, г. Москва, Нахимовский проспект, д. 31

Тел.: (495) 544-00-00, (499) 668-27-40, (499) 129-19-11

Факс: (499) 124-99-96

Аттестат аккредитации ГЦИ СИ ФБУ «Ростест-Москва» по проведению испытаний средств измерений в целях утверждения типа № 30010-10 от 15.03.2010 г.

Заместитель
Руководителя Федерального
агентства по техническому
регулированию и метрологии

			Ф.В. Булыгин
М.п.	"	"	2013 г.