ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Система автоматизированная информационно-измерительная коммерческого учета электроэнергии (АИИС КУЭ) ОАО «РЖД» тяговая подстанция 110 кВ «Тоннельная» в границах Краснодарского края

Назначение средств измерений

Система автоматизированная информационно-измерительная коммерческого учета электроэнергии (АИИС КУЭ) ОАО «РЖД» тяговая подстанция 110 кВ «Тоннельная» в границах Краснодарского края (далее по тексту - АИИС КУЭ) предназначена для измерения активной и реактивной электроэнергии, сбора, обработки, хранения и передачи полученной информации.

Описание средств измерений

АИИС КУЭ представляет собой многофункциональную трехуровневую автоматизированную систему с централизованным управлением и распределённой функцией измерения.

Измерительные каналы (далее - ИК) АИИС КУЭ включают в себя следующие уровни:

1-ый уровень - включает в себя измерительные трансформаторы тока (далее – ТТ) класса точности 0,2S и 0,5S по ГОСТ 7746-2001, измерительные трансформаторы напряжения (далее – ТН) класса точности 0,2 и 0,5 по ГОСТ 1983-2001, счетчики активной и реактивной электроэнергии типа Альфа А1800 класса точности 0,2S и 0,5S (в части активной электроэнергии по ГОСТ 30206-94, ГОСТ Р 52323-2005), класса точности 0,5 и 1,0 (в части реактивной электроэнергии по ГОСТ 26035-83, ГОСТ Р 52425-2005), вторичные измерительные цепи и технические средства приема-передачи данных;

2-ой уровень — измерительно-вычислительный комплекс регионального Центра энергоучёта, реализован на базе устройства сбора и передачи данных (УСПД RTU-327, Госреестр № 41907-09, зав. № 006943), выполняющего функции сбора, хранения результатов измерений и передачи их на уровень на 3-ий уровень, и содержит программное обеспечение (далее — ПО) «АльфаЦЕНТР», с помощью которого решаются задачи коммерческого многотарифного учета расхода и прихода электроэнергии в течение заданного интервала времени, измерения средних мощностей на заданных интервалах времени, мониторинга нагрузок заданных объектов;

3-ий уровень — измерительно-вычислительный комплекс Центра сбора данных АИИС КУЭ (далее – ИВК) включает в себя: серверное оборудование (серверы сбора данных – основной и резервный, сервер управления), каналы сбора данных с уровня регионального Центра энергоучёта, каналы передачи данных субъектам оптового рынка электроэнергии и мощности (ОРЭМ).

АИИС КУЭ решает следующие задачи:

- измерение 30-минутных приращений активной и реактивной электроэнергии;
- периодический (1 раза в сутки) и/или по запросу автоматический сбор привязанных к единому календарному времени результатов измерений приращений электроэнергии с заданной дискретностью учета (30 мин);
- периодический (1 раз в сутки) и/или по запросу автоматический сбор данных о состоянии средств измерений во всех измерительных каналах;
- хранение результатов измерений в специализированной базе данных, отвечающей требованию повышенной защищенности от потери информации (резервирование баз данных) и от несанкционированного доступа;
 - передача результатов измерений в заинтересованные организации;
- обеспечение защиты оборудования, программного обеспечения и данных от несанкционированного доступа на физическом и программном уровне (установка паролей и т.п.);

- диагностика и мониторинг функционирования технических и программных средств АИИС КУЭ;
 - конфигурирование и настройка параметров АИИС КУЭ;
 - ведение системы единого времени в АИИС КУЭ (синхронизация часов АИИС КУЭ). Принцип действия:

Первичные токи и напряжения преобразуются измерительными трансформаторами в аналоговые унифицированные сигналы, которые по проводным линиям связи поступают на измерительные входы счетчиков электроэнергии. В счетчиках мгновенные значения аналоговых сигналов преобразуются в цифровой сигнал. По мгновенным значениям силы электрического тока и напряжения в микропроцессорах счетчиков вычисляются соответствующие мгновенные значения активной, реактивной и полной мощности без учета коэффициентов трансформации, которые усредняются за 0,02 с. Средняя за период реактивная мощность вычисляется по средним за период значениям активной и полной мощности.

Средняя активная (реактивная) электрическая мощность вычисляется как среднее значение вычисленных мгновенных значений мощности на интервале времени усреднения 30 мин.

Цифровой сигнал с выходов счетчиков при помощи технических средств приема-передачи данных поступает на входы УСПД регионального Центра энергоучета, где производится обработка измерительной информации (умножение на коэффициенты трансформации), сбор и хранение результатов измерений. Далее информация поступает на ИВК Центра сбора данных АИ-ИС КУЭ.

АИИС КУЭ оснащена системой обеспечения единого времени (СОЕВ). Для синхронизации времени в системе в состав ИВК входит устройство синхронизации времени (УСВ) на основе приемника GPS типа УССВ-35LVS (35HVS). УСВ обеспечивает автоматическую синхронизацию часов сервера, при превышении порога (рассинхронизации) \pm 1с происходит коррекция часов сервера. Часы УСПД синхронизируются при каждом сеансе связи УСПД - сервер, коррекция проводится при расхождении часов УСПД и сервера на значение, превышающее \pm 1с. Часы счетчиков синхронизируются от часов УСПД с периодичностью 1 раз в 30 минут, коррекция часов счетчиков проводится при расхождении часов счетчиков и УСПД более чем на \pm 1 с. Взаимодействие между уровнями АИИС КУЭ осуществляется по протоколу NTP по оптоволоконной связи, задержками в линиях связи пренебрегаем ввиду малости значений. Поправка часов счетчиков согласно описанию типа \pm 0,5 с, а с учетом температурной составляющей – \pm 1,5 с. Ход часов компонентов АИИС КУЭ не превышает \pm 5 с/сут..

Программное обеспечение

Уровень ИВК Центра сбора данных содержит ПО "ЭНЕРГИЯ-АЛЬФА", включающее в себя модуль "Энергия Альфа 2". С помощью ПО "ЭНЕРГИЯ-АЛЬФА" решаются задачи автоматического накопления, обработки, хранения и отображения измерительной информации. Уровень регионального Центра энергоучета содержит ПО "АльфаЦЕНТР", включающее в себя "АльфаЦЕНТР APM", "АльфаЦЕНТР СУБД "ORACLE", модули "АльфаЦЕНТР Коммуникатор". С помощью ПО "АльфаЦЕНТР" решаются задачи коммерческого многотарифного учета расхода и прихода электроэнергии в течение заданного интервала времени, измерения средних мощностей на заданных интервалах времени, мониторинга нагрузок заданных объектов.

Таблица 1 - Сведения о программном обеспечении

Идентификацион- ное наименование ПО	Номер версии (идентификаци- онный номер) ПО	Цифровой идентификатор ПО (контрольная сумма исполняемого кода)	Идентификаци- онное наимено- вание файла ПО	Алгоритм вычисления цифрового идентификатора ПО
1	2	3	4	5
"АльфаЦЕНТР"	4	a65bae8d7150931f811cfbc6e4c 7189d	"АльфаЦЕНТР АРМ"	MD5

1	2	3	4	5
"АльфаЦЕНТР"	9	bb640e93f359bab15a02979e24d5ed48	"АльфаЦЕНТР СУБД "ORACLE"	MD5
"АльфаЦЕНТР"	3	3ef7fb23cf160f566021bf19264ca8d6	"АльфаЦЕНТР Коммуникатор"	MD5
"ЭНЕРГИЯ- АЛЬФА"	2.0.0.2	17e63d59939159ef304b8ff63121df60	"Энергия Аль- фа 2"	MD5

ПО ИВК «АльфаЦЕНТР» не влияет на метрологические характеристики системы автоматизированной информационно-измерительной коммерческого учета электроэнергии (АИИС КУЭ) ОАО «РЖД» тяговая подстанция 110 кВ «Тоннельная» в границах Краснодарского края.

Метрологические характеристики ИК АИИС КУЭ, указанные в таблицах 3, 4 нормированы с учетом Π O.

Уровень защиты программного обеспечения АИИС КУЭ от непреднамеренных и преднамеренных изменений соответствует уровню «С» по МИ 3286-2010.

Метрологические и технические характеристики

Состав 1-го и 2-го уровней системы автоматизированной информационноизмерительной коммерческого учета электроэнергии (АИИС КУЭ) ОАО «РЖД» тяговая подстанция 110 кВ «Тоннельная» в границах Краснодарского края приведен в таблице 2.

Таблица 2 - Состав 1-го и 2-го уровней АИИС КУЭ

	нца 2 - Состав 1-го г Наименование объ-	J 1	Состав 1-го и 2-го уровней АИИС КУЭ				
№ИК	екта	Трансформатор тока	Трансформатор напряжения	Счётчик	УСПД	электро- энергии	
1	2	3	4	5	6	7	
1	Тяговая подстанция 110 кВ Тоннельная Ввод 110 кВ	ТФЗМ 110Б-УХЛ1 кл. т 0,2S Ктт = 300/5 Зав. № 1537, 1538, 1539 Госреестр № 32825- 06	СРВ 72-800 кл. т 0,2 Ктн = (110000/√3)/(100/√3) Зав. № 1HSE-8828453, 1HSE-8828455, 1HSE-8828454 Госреестр № 47844-11	А1802RAL-P4GB-DW-4 кл. т 0,2S/0,5 Зав. № 01256729 Госреестр № 31857-11		активная реактивная	
2	Тяговая подстанция 110 кВ Тоннельная ТСН 0,4 кВ	ТСН кл. т 0,5S Ктт = 250/5 Зав. № 2032298, 2032273, 2032286 Госреестр № 26100- 03	-	А1805RL-P4G-DW-4 кл. т 0,5S/1,0 Зав. № 01256743 Госреестр № 31857-11	RTU-327 зав. № 006943 Госреестр № 41907-09	активная реактивная	
3	Тяговая подстанция 110 кВ Тоннельная ТСН 0,4 кВ резерв	ТСН кл. т 0,5S Ктт = 250/5 Зав. № 2032301, 2032276, 2032289 Госреестр № 26100- 03	-	А1805RL-P4G-DW-4 кл. т 0,5S/1,0 Зав. № 01256731 Госреестр № 31857-11		активная реактивная	

1	олжение таолицы $\frac{2}{2}$	3	4	5	6	7
4	Тяговая подстанция 110 кВ Тоннельная Фид. КТП-10/0,4	ТЛО-10 кл. т 0,5S Ктт = 50/5 Зав. № 22066, 22067, 22068 Госрестр № 25433- 11	ЗНОЛП-ЭК-10 кл. т 0,5 Ктн = (10000/√3)/(100/√3) Зав. № 603, 633, 616 Госреестр № 40014-08	A1805RL-P4G-DW-4 кл. т 0,5S/1,0 Зав. № 01256742 Госреестр № 31857-11		активная реактив- ная
5	Тяговая подстанция 110 кВ Тоннельная ВВ-1 10 кВ	ТЛО-10 кл. т 0,5S Ктт = 1000/5 Зав. № 22063, 22064, 22065 Госреестр № 25433- 11	ЗНОЛП-ЭК-10 кл. т 0,5 Ктн = (10000/√3)/(100/√3) Зав. № 603, 633, 616 Госреестр № 40014-08	А1805RAL-P4G-DW-4 кл. т 0,5S/1,0 Зав. № 01256730 Госреестр № 31857-11		активная реактивная
6	Тяговая подстанция 110 кВ Тоннельная ВВ-2 10 кВ	ТЛО-10 кл. т 0,5S Ктт = 1000/5 3ав. № 3768, 3767, 3766 Госреестр № 25433- 11	ЗНОЛП-ЭК-10 кл. т 0,5 Ктн = (10000/√3)/(100/√3) Зав. № 3637, 3615, 2978 Госреестр № 40014-08	А1805RL-P4G-DW-4 кл. т 0,5S/1,0 Зав. № 01256741 Госреестр № 31857-11		активная реактивная
7	Тяговая подстанция 110 кВ Тоннельная ПЭ-1 10 кВ сек. 2	ТЛО-10 кл. т 0,5S Ктт = 200/5 Зав. № 3769, 3770 Госреестр № 25433- 11	ЗНОЛП-ЭК-10 кл. т 0,5 Ктн = (10000/√3)/(100/√3) Зав. № 3637, 3615, 2978 Госреестр № 40014-08	А1805RL-P4G-DW-3 кл. т 0,5S/1,0 Зав. № 01256735 Госреестр № 31857-11	RTU-327 зав. № 006943 Госреестр № 41907-09	активная реактивная
8	Тяговая подстанция 110 кВ Тоннельная ПЭ-2 10 кВ сек. 1	ТЛО-10 кл. т 0,5S Ктт = 150/5 Зав. № 3772, 3771 Госреестр № 25433- 11	ЗНОЛП-ЭК-10 кл. т 0,5 Ктн = (10000/√3)/(100/√3) Зав. № 603, 633, 616 Госреестр № 40014-08	А1805RL-P4G-DW-3 кл. т 0,5S/1,0 Зав. № 01256732 Госреестр № 31857-11		активная реактивная
9	Тяговая подстанция 110 кВ Тоннельная Ф-3 10 кВ сек. 2	ТЛО-10 кл. т 0,5S Ктт = 50/5 Зав. № 3776, 3777 Госреестр № 25433- 11	ЗНОЛП-ЭК-10 кл. т 0,5 Ктн = (10000/√3)/(100/√3) Зав. № 3637, 3615, 2978 Госреестр № 40014-08	А1805RL-P4G-DW-3 кл. т 0,5S/1,0 Зав. № 01256737 Госреестр № 31857-11		активная реактивная
10	Тяговая подстанция 110 кВ Тоннельная Ф-4 10 кВ сек. 2	ТЛО-10 кл. т 0,5S Ктт = 50/5 Зав. № 3775, 3778 Госреестр № 25433- 11	ЗНОЛП-ЭК-10 кл. т 0,5 Ктн = (10000/√3)/(100/√3) Зав. № 3637, 3615, 2978 Госреестр № 40014-08	А1805RL-P4G-DW-3 кл. т 0,5S/1,0 Зав. № 01256740 Госреестр № 31857-11		активная реактивная

1	2	3	4	5	6	7
11	Тяговая подстанция 110 кВ Тоннельная Ф-5 10 кВ сек. 2	ТЛО-10 кл. т 0,5S Ктт = 75/5 Зав. № 3774, 3773 Госреестр № 25433- 11	ЗНОЛП-ЭК-10 кл. т 0,5 Ктн = (10000/√3)/(100/√3) Зав. № 3637, 3615, 2978 Госреестр № 40014-08	А1805RL-P4G-DW-3 кл. т 0,5S/1,0 Зав. № 01256734 Госреестр № 31857-11		активная реактивная
12	Тяговая подстанция 110 кВ Тоннельная Ф-1 10 кВ сек. 1	ТЛО-10 кл. т 0,5S Ктт = 50/5 Зав. № 22074, 22075 Госрестр № 25433- 11	ЗНОЛП-ЭК-10 кл. т 0,5 Ктн = (10000/√3)/(100/√3) Зав. № 603, 633, 616 Госреестр № 40014-08	A1805RL-P4G-DW-3 кл. т 0,5S/1,0 Зав. № 01256738 Госреестр № 31857-11		активная реактивная
13	Тяговая подстанция 110 кВ Тоннельная Ф. Тоннель №3 10 кВ сек. 1	ТЛО-10 кл. т 0,5S Ктт = 200/5 Зав. № 22070, 22071 Госреестр № 25433- 11	ЗНОЛП-ЭК-10 кл. т 0,5 Ктн = (10000/√3)/(100/√3) Зав. № 603, 633, 616 Госреестр № 40014-08	A1805RL-P4G-DW-3 кл. т 0,5S/1,0 Зав. № 01256736 Госреестр № 31857-11	RTU-327 зав. № 006943 Госреестр № 41907-09	активная реактивная
14	Тяговая подстанция 110 кВ Тоннельная Ф. Тоннель №3 10 кВ сек. 2	ТЛО-10 кл. т 0,5S Ктт = 300/5 Зав. № 22068, 22069 Госреестр № 25433- 11	ЗНОЛП-ЭК-10 кл. т 0,5 Ктн = (10000/√3)/(100/√3) Зав. № 3637, 3615, 2978 Госреестр № 40014-08	A1805RL-P4G-DW-3 кл. т 0,5S/1,0 Зав. № 01256733 Госреестр № 31857-11		активная реактивная
15	Тяговая подстанция 110 кВ Тоннельная Ф. Тоннель №4 10 кВ сек. 1	ТЛО-10 кл. т 0,5S Ктт = 600/5 Зав. № 22067, 22066 Госреестр № 25433- 11	ЗНОЛП-ЭК-10 кл. т 0,5 Ктн = (10000/√3)/(100/√3) Зав. № 603, 633, 616 Госреестр № 40014-08	A1805RL-P4G-DW-3 кл. т 0,5S/1,0 Зав. № 01256739 Госреестр № 31857-11		активная реактивная

Таблица 3- Метрологические характеристики ИК (активная энергия)

Tuomique of the posterial resident maparite profit man first (untributed of epities)						
		Пределы допускаемой относительной погрешности ИК				
		при измерении активной электроэнергии в рабочих условиях экс-				
Номер ИК	cosφ		плуатации АИ	ИИС КУЭ		
		$\delta_{1(2)}$ %,	δ _{5 %} ,	δ _{20 %} ,	δ _{100 %} ,	
		$I_{1(2)} \% \le I_{M3M} < I_{5\%}$	I_{5} % \leq $I_{_{H3M}}$ $<$ $I_{_{20}}$ %	$I_{20\%} \le I_{M3M} < I_{100\%}$	I_{100} % $\leq I_{изм} \leq I_{120}$ %	
	1,0	±1,2	± 0.8	±0,7	$\pm 0,7$	
1	0,9	±1,3	±0,9	±0,8	±0,8	
(TT 0,2S; TH 0,2; Сч	0,8	±1,4	±1,0	±0,8	±0,8	
0,2S)	0,7	±1,6	±1,1	±0,9	±0,9	
	0,5	±2,1	±1,4	±1,1	±1,1	
	1,0	±2,4	±1,6	±1,4	±1,4	
2, 3	0,9	±2,8	±1,8	±1,5	±1,5	
(TT 0,5S; Сч 0,5S)	0,8	±3,2	±2,0	±1,7	±1,7	
(11 0,55, C4 0,55)	0,7	±3,8	±2,3	±1,8	±1,8	
	0,5	±5,6	±3,2	±2,3	±2,3	

	CONTROLLED TO CONTROLLED TO					
		Пределы до	пускаемой относи	тельной погрец	иности ИК	
		при измерении активной электроэнергии в рабочих условиях экс-				
Номер ИК	cosφ	плуатации АИИС КУЭ				
		$\delta_{1(2)}$ %,	$\delta_{5\%}$,	δ _{20 %} ,	$\delta_{100\%},$	
		$I_{1(2)} \% \le I_{M3M} < I_{5\%}$	$I_{5\%} \le I_{M3M} < I_{20\%}$	$I_{20\%} \le I_{M3M} < I_{100\%}$	$I_{100 \%} \le I_{M3M} \le I_{120 \%}$	
	1,0	±2,4	$\pm 1,7$	±1,5	±1,5	
4 - 15	0,9	±2,8	±1,9	±1,7	±1,7	
(ТТ 0,5S; ТН 0,5; Сч	0,8	±3,3	±2,1	±1,8	±1,8	
0,5S)	0,7	±3,9	±2,5	±2,0	±2,0	
	0,5	±5,7	±3,4	±2,6	±2,6	

Таблица 4 – Метрологические характеристики ИК (реактивная энергия)

таолица 4 – потрологические характеристики ит (реактивная эпергия)								
		Пределы допускаемой относительной погрешности ИК						
		при измерении реактивной электроэнергии в рабочих условиях						
Номер ИК	cosφ		эксплуатации А	ЛИИС КУЭ				
		$\delta_{1(2)}$ %,	$\delta_{5\%},$	$\delta_{20\%},$	$\delta_{100\%},$			
		$I_{1(2)} \% \le I_{M3M} < I_{5\%}$	$I_{5\%} \le I_{M3M} < I_{20\%}$	$I_{20\%} \le I_{M3M} < I_{100\%}$	I_{100} % \leq I_{120} %			
1	0,9	±5,6	$\pm 2,1$	±1,5	$\pm 1,4$			
(TT 0,2S; TH 0,2; Cч	0,8	±4,3	±1,7	±1,2	±1,2			
1 1	0,7	±3,7	±1,6	±1,1	±1,1			
0,5)	0,5	±3,2	±1,4	±1,1	±1,1			
	0,9	±12,0	±4,6	±3,0	±2,8			
2, 3	0,8	±9,0	±3,6	±2,4	±2,3			
(ТТ 0,5S; Сч 1,0)	0,7	±7,7	±3,2	±2,2	±2,2			
	0,5	$\pm 6,4$	±2,8	±2,1	$\pm 2,0$			
4 – 15 (ТТ 0,5S; ТН 0,5; Сч	0,9	±12,1	±4,8	±3,3	±3,1			
	0,8	±9,0	±3,7	±2,7	±2,6			
	0,7	±7,7	±3,3	±2,4	±2,3			
1,0)	0,5	±6,5	±2,9	±2,2	±2,1			

Примечания:

- 1. Погрешность измерений $\delta_{1(2)\%P}$ и $\delta_{1(2)\%Q}$ для $\cos \phi = 1,0$ нормируется от $I_{1\%}$, а погрешность измерений $\delta_{1(2)\%P}$ и $\delta_{1(2)\%Q}$ для $\cos \phi < 1,0$ нормируется от $I_{2\%}$.
- 2. Характеристики относительной погрешности ИК даны для измерения электроэнергии и средней мощности (30 мин.).
- 3. В качестве характеристик относительной погрешности указаны границы интервала, соответствующие вероятности 0,95.
- 4. Нормальные условия эксплуатации:
 - параметры сети: диапазон напряжения от $0.98 \cdot \text{U}$ ном до $1.02 \cdot \text{U}$ ном; диапазон силы тока от Іном до $1.2 \cdot \text{I}$ ном, $\cos \varphi = 0.9$ инд; частота (50 ± 0.15) Γ ц;
 - температура окружающего воздуха: ТТ и TH от минус 40° C до плюс 50° C; счетчиков от плюс 18° C до плюс 25° C; УСПД от плюс 10° C до плюс 30° C; ИВК от плюс 10° C до плюс 30° C:
 - магнитная индукция внешнего происхождения, не более 0,05 мТл.
- 5. Рабочие условия эксплуатации:
 - для ТТ и ТН:
 - параметры сети: диапазон первичного напряжения от 0,9·Uн1 до 1,1·Uн1; диапазон силы первичного тока от 0,01·Iн1 до 1,2·Iн1; частота $(50 \pm 0,4)$ Γ Ц;
 - температура окружающего воздуха от минус 30 °C до 35 °C.
 - для счетчиков электроэнергии:

- для счётчиков электроэнергии Альфа A1800 от минус 40°С до плюс 65 °С;
- параметры сети:
 - диапазон вторичного напряжения от 0,9·Uн2 до 1,1·Uн2;
 - диапазон силы вторичного тока от $0.01 \cdot \text{Ih}2$ до $1.2 \cdot \text{Ih}2$;
 - частота (50 ± 0,4) Гц;
- температура окружающего воздуха от 10 °C до 30 °C;
- магнитная индукция внешнего происхождения, не более 0,5 мТл.
- 6. Допускается замена измерительных трансформаторов и счетчиков электроэнергии на аналогичные утвержденных типов с метрологическими характеристиками не хуже, чем у перечисленных в таблице 2. Допускается замена УСПД на однотипный утвержденного типа. Замена оформляется актом в установленном на подстанции ОАО "РЖД" порядке. Акт хранится совместно с настоящим описанием типа АИИС КУЭ как его неотъемлемая часть. Порядок оформления замены измерительных компонентов, а также других изменений, вносимых в АИИС КУЭ в процессе их эксплуатации после утверждения типа в качестве единичного экземпляра, осуществляется согласно Приложению Б МИ 2999-2011.

Параметры надежности применяемых в АИИС КУЭ измерительных компонентов:

- счетчик электроэнергии Альфа А1800 среднее время наработки на отказ не менее 120000 часов;
 - УСПД среднее время наработки на отказ не менее 40000 часов;
 - УССВ-35HVS среднее время наработки на отказ не менее 35000 часов;
 - ИВК среднее время наработки на отказ не менее 70000 часов; Среднее время восстановления, при выходе из строя оборудования:
 - для счетчиков Tв ≤ 2 часа;
 - для УСПД Тв ≤ 1 час;
 - для сервера Тв ≤ 1 час;
 - для компьютера АРМ Тв ≤ 1 час.

Защита технических и программных средств АИИС КУЭ АЭС от несанкционированного доступа:

- клеммники вторичных цепей измерительных трансформаторов имеют возможность пломбирования;
- на счетчики предусмотрена возможность пломбирование крышки зажимов и откидывающейся прозрачной крышки на лицевой панели счетчиков;
- наличие защиты на программном уровне возможность установки многоуровневых паролей на счетчиках, серверах, АРМ;
- организация доступа к информации ИВК посредством паролей обеспечивает идентификацию пользователей и разграничение прав доступа;
- защита результатов измерений при передаче информации (возможность использования цифровой подписи).

Наличие фиксации в журнале событий счетчиков следующих событий

- фактов параметрирования счетчиков;
- фактов пропадания напряжения;
- фактов коррекции времени.

Возможность коррекции времени в:

- счетчиках (функция автоматизирована);
- УСПД, серверах, АРМ (функция автоматизирована).

Глубина хранения информации:

- счетчики электроэнергии и "Альфа А1800" до 30 лет при отсутствии питания;
- УСПД хранение данных при отключении питания не менее 5 лет;
- ИВК хранение результатов измерений и информации о состоянии средства измерений - не менее 5 лет.

Знак утверждения типа

Знак утверждения типа наносится на титульные листы эксплуатационной документации АИИС КУЭ типографским способом.

Комплектность средств измерений

Комплектность АИИС КУЭ приведена в таблице 5

Таблица 5 - Комплектность АИИС КУЭ

Наименование	Обозначение (Тип)	Кол-во, шт.
Трансформатор тока	ТФЗМ 110Б-УХЛ1	3
Трансформатор тока	TCH	6
Трансформатор тока	ТЛО-10	27
Трансформатор напряжения	CPB 72-800	3
Трансформатор напряжения	ЗНОЛП-ЭК-10	6
Счётчик электроэнергии	A1802RAL-P4GB-DW-4	1
Счётчик электроэнергии	A1805RAL-P4G-DW-4	1
Счётчик электроэнергии	A1805RL-P4G-DW-4	4
Счётчик электроэнергии	A1805RL-P4G-DW-3	9
Источник бесперебойного питания	APC Black-Smart-UPS 1000 USB RM 2U, APC Smart-UPS 2200 VA RM 3U Black	1
Сервер базы данных (основной)	HP ML-570 зав. № CZB2564LKN	1
Приемник устройства синхронизации времени	УССВ-35HVS	1
Устройство сбора и передачи дан- ных	RTU-327-E1-B16-M16	1
Шлюз-концентратор	ШК-2 ТП	1
Программное обеспечения	«АльфаЦЕНТР»	1
трограммное обеспечения	«ЭНЕРГИЯ-АЛЬФА»	1
Методика поверки	МП 1718/550-2013	1
Паспорт-формуляр	3106-02/03.1-ЭТС1.ПФ	1

Поверка

осуществляется по документу МП 1718/550-2013 "ГСИ. Система автоматизированная информационно-измерительная коммерческого учета электроэнергии (АИИС КУЭ) тяговая подстанция 110 кВ Тоннельная ОАО «РЖД». Методика поверки", утвержденному ФБУ «Ростест-Москва» в ноябре 2013г.

Основные средства поверки:

- для трансформаторов тока по ГОСТ 8.217-2003;
- для трансформаторов напряжения − по ГОСТ 8.216-2011;
- для счетчиков Альфа A1800 в соответствии с документом МП-2203-0042-2006 « Счетчики электрической энергии трехфазные многофункциональные Альфа A1800. Методика поверки», утвержденным ГЦИ СИ «ВНИИМС им. Д. И. Менделеева» в мае 2006 г.;
- для УСПД (RTU-327) по документу «Устройства сбора и передачи данных серии RTU -327. Методика поверки. ДЯИМ.466215.007 МП», утвержденному ГЦИ СИ ФГУП «ВНИИМС» в 2009 г.;
- радиочасы МИР РЧ-01, принимающие сигналы спутниковой навигационной системы Global Positioning System (GPS) (Госреестр № 27008-04);

– переносной компьютер с ПО и оптический преобразователь для работы со счетчиками системы, ПО для работы с радиочасами МИР РЧ-01.

Сведения о методиках (методах) измерений

«Методика (методы) измерений количества электрической энергии с использованием системы автоматизированной информационно-измерительной коммерческого учета электроэнергии (АИИС КУЭ) ОАО «РЖД» тяговая подстанция 110 кВ «Тоннельная» в границах Краснодарского края». Аттестована ФБУ «Ростест-Москва». Свидетельство об аттестации методики измерений № 1319/550-01.00229.2013 от 11.11.2013 г.

Нормативные документы, устанавливающие требования к системе автоматизированной информационно-измерительной коммерческого учета электроэнергии (АИИС КУЭ) ОАО «РЖД» тяговая подстанция 110 кВ «Тоннельная» в границах Краснодарского края:

- 1. ГОСТ Р 8.596-2002 ГСИ. Метрологическое обеспечение измерительных систем. Основные положения.
- 2. ГОСТ 22261-94 Средства измерений электрических и магнитных величин. Общие технические условия.
- 3. ГОСТ 34.601-90 Информационная технология. Комплекс стандартов на автоматизированные системы. Автоматизированные системы. Стадии создания.
 - 4. ГОСТ 7746-2001 Трансформаторы тока. Общие технические условия.
 - 5. ГОСТ 1983-2001 Трансформаторы напряжения. Общие технические условия.
- 6. ГОСТ Р 52323-2005 (МЭК 62053-22:2003) "Аппаратура для измерения электрической энергии переменного тока. Частные требования. Часть 22. Статические счетчики активной энергии классов точности 0,2S и 0,5S".
- 7. ГОСТ Р 52425-2005 (МЭК 62053-23:2003) "Аппаратура для измерения электрической энергии переменного тока. Частные требования. Часть 23. Статические счетчики реактивной энергии".

Рекомендации по областям применения в сфере государственного регулирования обеспечения единства измерений

- при осуществлении торговли и товарообменных операций.

Изготовитель

Открытое акционерное общество "Российские Железные Дороги"

(ОАО "РЖД")

Адрес: 107174, г. Москва, Новая Басманная ул., д.2

Тел.: (499) 262-60-55 Факс: (499) 262-60-55 e-mail: <u>info@rzd.ru</u> http://www.rzd.ru/

Заявитель

ДКРС-Сочи ОАО «РЖД»- обособленное структурное подразделение ДКРС ОАО «РЖД».

Юридический адрес: 107174, г. Москва, Новая Басманная ул., д. 2

Почтовый адрес: 354000, г. Сочи, ул. Московская, д. 22

Тел.: (8622) 90-25-01 Факс: (8622) 90-25-30

Испытательный центр

Федеральное бюджетное учреждение «Государственный региональный центр стандартизации, метрологии и испытаний в г. Москве» (ФБУ «Ростест-Москва»).

Адрес: 117418 г. Москва, Нахимовский проспект, 31 Тел.: 8(495) 544-00-00, 668-27-40, (499) 129-19-11

Факс: (499) 124-99-96

Аттестат аккредитации ГЦИ СИ ФБУ «Ростест-Москва» по проведению испытаний средств измерений в целях утверждения типа № 30010-10 от 15.03.2010 года.

Заместитель	
Руководителя Федерального	
агентства по техническому	
регулированию и метрологии	

			Ф.В. Булыгин
М.п.	"	"	2013 г.