ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Система автоматизированная информационно-измерительная коммерческого учета электроэнергии Олимпиадинского и Благодатнинского ГОК Красноярской БЕ ЗАО «Полюс»

Назначение средства измерений

Система автоматизированная информационно-измерительная коммерческого учета электроэнергии Олимпиадинского и Благодатнинского ГОК Красноярской БЕ ЗАО «Полюс» (далее по тексту - АИИС КУЭ) предназначена для измерения активной и реактивной электроэнергии, сбора, хранения и обработки полученной информации.

Описание средства измерений

АИИС КУЭ представляет собой многофункциональную, многоуровневую систему с централизованным управлением и распределенной функцией измерения.

АИИС КУЭ решает следующие задачи:

- автоматические измерения 30-минутных приращений активной и реактивной электрической энергии и средних 30-минутных интервалах значений активной и реактивной мощности;
- периодический (1 раз в сутки) и/или по запросу автоматический сбор привязанных к единому календарному времени результатов измерений приращений электрической энергии с заданной дискретностью учета 30 мин и данных о состоянии средств измерений;
- хранение результатов измерений в специализированной базе данных, отвечающей требованию повышенной защищенности от потери информации (резервирование баз данных) и от несанкционированного доступа;
- подготовка данных о результатах измерений и состоянии средств измерений в XML формате и их предоставление по электронной почте в ОАО «АТС», филиал ОАО «СО ЕЭС» Красноярское РДУ и ЗАО «Витимэнергосбыт» для проведения расчетов на оптовом рынке электроэнергии;
- обеспечение защиты оборудования, программного обеспечения и данных от несанкционированного доступа на физическом и программном уровне (пломбирование, установка паролей и т.п.);
- диагностика функционирования технических и программных средств АИИС КУЭ;
- конфигурирование и настройка параметров АИИС КУЭ;
- ведение единого времени в АИИС КУЭ.

АИИС КУЭ построена на базе информационно-вычислительного комплекса (ИВК) «АльфаЦЕНТР» номер по государственному реестру (далее - № ГР) 44595-10 и включает в себя следующие уровни:

1-ый уровень системы – состоит из 16 информационно-измерительных комплексов (ИИК), включающих измерительные трансформаторы тока класса точности 0,2S и 0,5 по ГОСТ 7746, измерительные трансформаторы напряжения классов точности 0,2 и 0,5 по ГОСТ 1983, трехфазные многофункциональные счетчики электрической энергии Альфа А1802, кл. т. 0,2S/0,5 по ГОСТ Р 52323 (в части активной электроэнергии) и по ТУ 4228-011-29056091-11 (в части реактивной электроэнергии).

2-ой уровень системы - информационно-вычислительные комплексы электроустановок (ИВКЭ) состоит из шести УСПД RTU-325, двух устройств синхронизации системного времени (УССВ) подключенных к УСПД, технических средств для

организации локальной вычислительной сети, аппаратуры приема-передачи данных с электрическими и оптическими линиями связи.

3-ий уровень системы - информационно-вычислительный комплекс (ИВК) Центра сбора и передачи данных Красноярской БЕ ЗАО «Полюс» (далее – КБЕ ЗАО «Полюс») на базе комплекса измерительно-вычислительного учета электрической энергии «АльфаЦЕНТР». ИВК выполняет функции сбора и хранения результатов измерений и информации, их обработку и архивирование, а также формирует отчетную информацию, обеспечивает доступ к ней и ее передачу в организации - участники оптового рынка электроэнергии.

ИВК включает в себя сервер сбора и передачи данных на основе УСПД RTU-327 и подключенное к нему УССВ, сервер базы данных (БД), аппаратуру приема-передачи данных и технические средства для организации локальной вычислительной сети, электрические и оптические линии связи, автоматизированные рабочие места (APM) должностных лиц КБЕ 3AO «Полюс».

В состав программного обеспечения ИВК, помимо операционной системы, входит специализированное программное обеспечение «АльфаЦЕНТР» в комплекте с системой управления базой данных (СУБД) Oracle Database 11g, необходимое для реализации всех функций ИВК работы с данными.

Первичные токи и напряжения контролируемого присоединения преобразуются измерительными трансформаторами в аналоговые унифицированные сигналы, которые по проводным линиям связи поступают на измерительные входы счетчика электрической энергии, где мгновенные значения аналоговых сигналов тока и напряжения преобразуются в цифровой сигнал. По цифровому сигналу производится вычисление значений активной и реактивной мощностей, усредненных за период основной частоты сигналов.

Усреднение значений активной и реактивной мощности и вычисление приращений активной и реактивной электрической энергии в счетчике производится за интервал времени, равный 30 мин.

УСПД RTU-325 считывает приращения электрической энергии в цифровом виде со счетчиков электрической энергии и осуществляет их перевод в именованные физические величины с учетом постоянной счетчика, а также умножение на коэффициенты трансформации TT и TH, осуществляет сбор служебной информации и хранение, полученных данных, обеспечивает автоматическую синхронизацию часов счетчиков электрической энергии.

Далее измеренные величины и служебная информация от УСПД передаются на уровень ИВК, где ведется учет потребления электроэнергии и мощности по временным интервалам, формирование и хранение поступающей информации, оформление справочных и отчетных документов и информационное взаимодействие с АРМ и организациями—участниками оптового рынка электроэнергии.

АИИС КУЭ оснащена системой обеспечения единого времени (СОЕВ), сформированной на всех уровнях иерархии, включающей в себя УССВ-16HVS в составе УСПД. УССВ подключены непосредственно к УСПД RTU-325L ИВКЭ № 1 и № 2, а также к серверу сбора и передачи данных на базе УСПД RTU-327L серверного шкафа АИИС КУЭ. Часы этих УСПД синхронизируются УССВ (на базе приемника Garmin GPS-35), по сигналам точного времени, принимаемым от спутников глобальной системы позиционирования (GPS). Проверка осуществляется каждые 30 минут, коррекция часов УСПД производится при расхождении, превышающем ± 2 с.

Эти УСПД синхронизируют часы подчиненных УСПД RTU-325L. Сервер сбора и передачи данных синхронизирует часы УСПД ИВКЭ № 3, № 4 и № 5, а УСПД ИВКЭ № 6 синхронизирует часы УСПД ИВКЭ № 2. Проверка осуществляется каждые 30 минут,

коррекция производится при расхождении часов УСПД более ± 1 с. Сличение часов счётчиков с часами УСПД осуществляется каждые 30 минут, коррекция часов счётчиков производится при достижении расхождения с часами УСПД, превышающем ± 2 с.

Погрешность часов измерительных компонентов системы не превышает ±5 с.

Программное обеспечение

Программное обеспечение (ПО) АИИС КУЭ состоит из следующих сертифицированных программных продуктов:

- «MeterCat Альфа A1800» программный пакет для работы со счетчиками серии Альфа 1800 (чтение и конфигурирование);
- «Конфигуратор RTU-325» программа, необходимая для подключения УСПД RTU-325 (поставляется в комплекте с УСПД);
- «АльфаЦЕНТР» AC_SE программный пакет, реализующий функции уровня ИВК в комплекте с СУБД Oracle Database 11g.

ПО АИИС КУЭ обеспечивает:

- поддержку функционирования ИВК в составе локальной вычислительной сети (при необходимости);
- функционирование системы управления базами данных (формирование базы данных, управление файлами, их поиск, поддержку);
 - формирование отчетов и их отображение, вывод на печатающее устройство;
 - поддержку СОЕВ;
 - решение конкретных технологических и производственных задач пользователей.

Идентификационные данные ПО приведены в табл. 1

Таблица 1 — Идентификационные данные метрологически значимой части ПО АИИС КУЭ КБЕ ЗАО «Полюс»

Наименование ПО	Идентификационное наименование ПО (программного модуля)	Номер версии (идентификационный номер) ПО	Цифровой идентифи- катор ПО (контроль- ная сумма исполняе- мого кода)	Алгоритм вычисления цифрового идентификатора ПО
Программа-планиров- щик опроса и передачи данных	Amrserver.exe	12.07.03.01	559f01748d4be825 c8cda4c32dc26c56	MD5
Драйвер ручного опро- са счетчиков и УСПД	Amrc.exe		a75ff376847d22ae 4552d2ec28094f36	
Драйвер автоматиче- ского опроса счетчи- ков и УСПД	Amra.exe		9cf3f689c94a65da ad982ea4622a3b96	
Драйвер работы с ба- зой данных	Cdbora2.dll		0630461101a0d2c1 f5005c116f6de042	
Библиотека шифрования пароля счетчиков	Encryptdll.dll		0939ce05295fbcbb ba400eeae8d0572c	
Библиотека сообщений планировщика опросов	Alphamess.dll		b8c331abb5e34444 170eee9317d635cd	

Уровень защиты ΠO от непреднамеренных и преднамеренных изменений в соответствии с МИ 3286-2010 - «С». Влияние ΠO на метрологические характеристики АИИС КУЭ отсутствует.

Метрологические и технические характеристики

Состав измерительных каналов (ИК) представлен в табл. 2, а метрологические характеристики ИК в рабочих условиях эксплуатации в табл. 3 и 4.

Таблица 2 — Состав ИК АИИС КУЭ

No	Наименование	Состав ИК				Вид	
ИК	присоединения (точка учета)	Трансформатор тока (ТТ)	Трансформатор напряжения (ТН)	Счетчик электроэнергии	УСПД	ИВК	электро- энергии
1	ВЛ 110 кВ С-655 ПС 110/35/6 кВ "Новая Еруда" (1.1)	ТФ3М-110Б-IV УХЛ1, 3 ед. К _Т =0,5; Кі= 300/5 № ГР 52154-12	НКФ-110-57, 3 ед. $K_T = 0.5$; $Ku = 10000: \sqrt{3}/100: \sqrt{3}$ № ГР 26452-06	Альфа $A1800$ $K_T = 0.2S/0.5$ Іном(макс.)= $5(10)A$ N Ω Γ P $31857-11$	RTU-325L № ГР 37288-08		Активная,
2	ВЛ 110 кВ С-656 ПС 110/35/6 кВ "Новая Еруда" (1.2)	ТФЗМ-110Б-IV УХЛ1, 3 ед. К _Т =0,5; Кі= 300/5 № ГР 52154-12	$HK\Phi$ -110-57, 3 ед. K_T = 0,5; Ku = 10000: $\sqrt{3}/100$: $\sqrt{3}$ № ΓP 26452-06	Альфа $A1800$ $K_T = 0.2S/0.5$ I ном(макс.)= $5(10)$ A N Ω P $31857-11$	3aв. № 006906		реактивная
3	ВЛ 110кВ С-653 ПС 110/6 кВ "Благодатнинская" (2.1)	ТФЗМ-110Б-IV, 3 ед.; K _T = 0,2S; Ki = 100/5 № ГР 26422-06	HKΦ-110, 3 eд. $K_T = 0.2$; $Ku = 10000: \sqrt{3}/100: \sqrt{3}$ № ΓР 26452-06	Альфа $A1800$ $K_T = 0.2S/0.5$ I ном(макс.)= $5(10)$ A N Ω P B	RTU-325L № ГР 37288-08		Активная,
4	ВЛ 110кВ С-654 ПС 110/6кВ "Благодатнинская" (2.2)	ТФ3M-110Б-IV, 3 ед., K _T = 0,2S; Ki= 100/5 № ГР 26422-06	HKΦ-110, 3 eд. $K_T = 0.2$; $Ku = 10000: \sqrt{3}/100: \sqrt{3}$ № ГР 26452-06	Альфа $A1800$ $K_T = 0.2S/0.5$ I ном(макс.)= $5(10)$ A N $^{\circ}$ Γ P $31857-11$	3aв. № 006901	«Альфа ЦЕНТР» № ГР 44595-10	реактивная
5	ДГ-3 ДЭС 3,2МВт яч.13/1с.ш. КРУН-6 кВ ПС 110/6 кВ "ЗИФ №1" (1)	ТЛМ-10-2, 3 ед. K _T =0,5; Ki = 300/5 № ГР 2473-05	НАМИТ-10-1, 1 ед. K_T = 0,5; K_U = 6000/100 № ГР 16687-07	Альфа А1800 К _Т = 0,2S/0,5 Іном(макс.)=5(10) А №ГР 31857-11	RTU-325L № ГР 37288-08		Активная,
6	ДГ-4 ДЭС 3,2МВт яч.14/2с.ш. КРУН-6 кВ ПС 110/6кВ "ЗИФ №1" (2)	ТЛМ-10-2, 3 ед. К _Т =0,5; Кі= 300/5 № ГР 2473-05	HAMИТ-10-1, 1 ед. $K_T = 0.5$ Ku = 6000/100 № ГР 16687-07	Альфа А1800 К _Т = 0,2S/0,5 Іном(макс.)=5(10)А №ГР 31857-11	Зав. № 006904		реактивная
7	ДГУ-4 яч. 9/1 с.ш. КРУ- 6 кВ ТП-31 ДЭС 17,2МВт (3)	ТРU 40.23, 3 ед. К _Т =0,5; Кі= 600/5 № ГР 54667-13	ТЈР 4.0, 3 ед. K_T =0,5; K_U = 6300: $√3/100$: $√3$ № ГР 54666-13	Альфа $A1800$ $K_T = 0.2S/0.5$ Іном(макс.)= $5(10)A$ N Ω Γ P $31857-11$			
8	ДГУ-5 яч.7/1с.ш. КРУ- 6кВ ТП-31 ДЭС 17,2МВт (4)	ТРU 40.23, 3 ед. К _Т =0,5; Кі= 600/5 № ГР 54667-13	ТЈР 4.0, 3 ед. K_T =0,5; Ku = 6300: $\sqrt{3}$ /100: $\sqrt{3}$ № ГР 54666-13	Альфа $A1800$ $K_T = 0.2S/0.5$ Iном(макс.)= $5(10)$ A NP $ 31857-11$	RTU-325L № ГР 37288-08		Активная,
9	ДГУ-6 яч.8/2с.ш. КРУ- 6кВ ТП-31 ДЭС 17,2МВт (5)	ТРU 40.23, 3 ед. К _Т =0,5; Кі= 600/5 № ГР 54667-13	ТЈР 4.0, 3 ед. K_T =0,5; Ku = 6300: $\sqrt{3}/100$: $\sqrt{3}$ № Γ P 54666-13	Альфа $A1800$ $K_T = 0.2S/0.5$ I НОМ(Макс.)= $5(10)$ A N Ω Γ P $31857-11$	3aв. № 006903		реактивная
10	ДГУ-7 яч. 10/2с.ш. КРУ- 6 кВ ТП-31 ДЭС 17,2МВт (6)	ТРU 40.23, 3 ед. К _Т =0,5; Кі= 600/5 № ГР 54667-13	ТЈР 4.0, 3 ед. K_T =0,5; Ku = 6300: $\sqrt{3}$ /100: $\sqrt{3}$ № Γ P 54666-13	Альфа $A1800$ $K_T = 0.2S/0.5$ Іном(макс.)= $5(10)A$ N Ω Γ P $31857-11$			
11	ТГ-1 яч. 6/1 с.ш. ГРУ 6 кВ ТЭЦ №1 (7)	ТОЛ-10-I, 3 ед. К _Т =0,5; Кі= 800/5 № ГР 15128-03	3НОЛ.06-6У3, 3 ед., K_T =0,5 Ku = 300: $√$ 3/100: $√$ 3 № ГР 3344-04	Альфа А1800 К _Т =0,2S/0,5 Іном(макс.)=5(10)А №ГР 31857-11	RTU-325L № ГР 37288-08 3ав. № 006905		Активная, реактивная

12	ТГ-2 яч.14/2с.ш. ГРУ 6 кВ ТЭЦ №1 (8)	ТОЛ-10-I, 3 ед. К _Т =0,5; Кі= 800/5 № ГР 15128-03	ЗНОЛ.06-6УЗ, З ед., $K_T = 0.5$ Ku = 300: √3/100: √3 № ГР 3344-04	Альфа A1800 $K_T = 0.2S/0.5$ Iном(макс.)= $5(10)$ A N Γ P 31857-11			
13	ТГ-3 яч.20/3с.ш. ГРУ 6 кВ ТЭЦ №1 (9)	ТОЛ-10-I, 3 ед. K_T =0,5; K_I = 800/5 M Γ P 15128-03	3HOЛ.06-6У3, 3 ед., К _Т = 0,5 Ки = 300:√3/100:√3 № ГР 3344-04	Альфа $A1800$ $K_T = 0.2S/0.5$ I ном(макс.)= $5(10)$ A N $^{\circ}$ Γ $P 31857-11$			Активная, реактивная
14	ТГ-1 яч.6/1с.ш. ГРУ 6кВ ТЭЦ №2 (10)	ТОЛ-СЭЩ-10, 3 ед., K _T = 0,5 Ki = 1000/5 № ГР 32139-06	3HOЛ-СЭЩ-6, 3 ед. K _T =0,5; Ku = 6300:√3/100:√3 № ГР 35956-07	Альфа А1800 К _Т = 0,2S/0,5 Іном(макс.)=5(10)А №ГР 31857-11			
15	ТГ-2 яч.8/1с.ш. ГРУ 6 кВ ТЭЦ №2 (11)	ТОЛ-СЭЩ-10, 3 ед., K _T = 0,5 Ki = 1000/5 № ГР 32139-06	3НОЛ-СЭЩ-6, 3 ед. K _T =0,5; Ku = 6300:√3/100:√3 № ГР 35956-07	Альфа А1800 К _Т = 0,2S/0,5 Іном(макс.)=5(10)А №ГР 31857-11	RTU-325L № ГР 37288-08 3ав. № 006902	«Альфа ЦЕНТР»	Активная, реактивная
16	ТГ-3 яч.18/2с.ш. ГРУ 6 кВ ТЭЦ №2 (12)	ТОЛ-СЭЩ-10, 3 ед., K _T = 0,5 Ki = 1000/5 № ГР 32139-06	3НОЛ-СЭЩ-6, 3 ед. K _T =0,5; Ku = 6300:√3/100:√3 № ГР 35956-07	Альфа А1800 K _T = 0,2S/0,5 Іном(макс.)=5(10)А №ГР 31857-11			

Таблица 3 – Пределы допускаемой относительной погрешности ИК при измерении активной энергии в рабочих условиях эксплуатации

№ ИК	Значение соя ф	±δ _{2%P} , [%] W _{PI2%} ≤W _{Ризм} <w<sub>РI5%</w<sub>	±δ _{5%P} , [%] W _{PI5%} ≤W _{Pи3м} <w<sub>PI20%</w<sub>	±δ _{20%P} , [%] W _{PI20%} ≤W _{Ризм} <w<sub>PI100%</w<sub>	±δ _{100%P} , [%] W _{PI100%} ≤W _{Ризм} ≤W _{РI120%}
	1,0	-	±1,8	±1,1	±0,88
1, 2,	0,866	-	±2,6	±1,5	±1,2
5 - 16	0,8	-	±2,9	±1,7	±1,3
	0,5	-	±5,5	±3,0	±2,3
	1,0	±0,94	±0,60	±0,51	±0,51
3, 4	0,866	±1,2	±0,86	±0,64	±0,64
3,4	0,8	±1,3	±0,91	±0,68	±0,68
	0,5	±1,9	±1,3	±1,1	±1,1

Таблица 4 – Пределы допускаемой относительной погрешности ИК при измерении реактивной энергии в рабочих условиях эксплуатации

No	Значение	$\pm \delta_{2\%Q}$, [%]	$\pm\delta_{5\%\mathrm{P}}$, [%]	±δ _{20%P} , [%]	$\pm \delta_{100\%P}$, [%]
канала	$\cos \varphi / \sin \varphi$	$W_{Q2\%} \le W_{Q_{H3M}} < W_{QI5\%}$			$W_{QI100\%} \leq W_{Q_{II3M}} \leq W_{QI120\%}$
1 2	0,5/0,866	-	±5,6	±3,1	±2,4
1, 2, 5 - 16	0,6/0,8	-	±4,5	±2,6	±2,0
3 - 10	0,866/0,5	-	±2,8	±1,7	±1,4
	0,5/0,866	±2,2	±1,8	±1,4	±1,4
3, 4	0,6/0,8	±2,0	±1,6	±1,2	±1,2
3,4	0,866/0,5	±1,6	±1,4	±0,98	±0,98

где δ [%] - предел допускаемой относительной погрешности ИК при значении тока в сети относительно $I_{\text{ном}}$ 2% ($\delta_{\text{2%P}}$, $\delta_{\text{2%Q}}$), 5% ($\delta_{\text{5%P}}$, $\delta_{\text{5%Q}}$), 20% ($\delta_{\text{20%P}}$, $\delta_{\text{20%Q}}$) и 100% ($\delta_{\text{100%P}}$, $\delta_{\text{100%Q}}$);

1

W_{изм} - значение приращения активной (Р) и реактивной (Q) электроэнергии за 30-минутный интервал времени в диапазоне измерений с границами 2% (W_{PI5%}, W_{OI5%}), 5% $(W_{PI5\%},\ W_{QI5\%}),\ 20\%\ (W_{PI20\%},\ W_{QI20\%}),\ 100\%\ (W_{PI00\%},\ W_{QI100\%})$ и 120% $(W_{PI120\%},\ W_{QI20\%}),\ 100\%$ $W_{OI120\%}$).

Примечания:

- 1. Характеристики относительной погрешности ИК даны для измерения электроэнергии и средней мощности (получасовая).
- 2. В качестве характеристик относительной погрешности указаны границы интервала, соответствующие вероятности 0,95.
- 3. Метрологические характеристики нормированы с учетом ПО.
- 4. Нормальные условия эксплуатации АИИС КУЭ:

- температура окружающего воздуха	20±5 °C
- сила тока	$1\pm0,2~I_{\scriptscriptstyle HOM}$
- напряжение	$1\pm0,02~U_{{\scriptscriptstyle HOM}}$
- коэффициент мощности (cos ф)	0,9 инд
- частота питающей сети, Гц	от 49 до 51

5. Рабочие условия эксплуатации АИИС КУЭ:

- температура окружающего воздуха для ТТ и ТН, °С	от -60 до +40
- температура окружающего воздуха для счетчиков, °C	от -40 до +65
- сила тока, $\%$ от номинального (I_{HOM})	от $I_{\scriptscriptstyle MUH}$ до 120
- напряжение, % от номинального (U_{HOM})	от 90 до 110
- коэффициент мощности (cos φ)	0,5 инд - 0,8 инд -
- настота питающей сети. Ги	от 49 по 51

- частота питающей сети, Гц от 49 до 51

- 6. Погрешность в рабочих условиях указана:
 - для I от 0,02 I_{HOM} до 1,2 I_{HOM} ;
 - для cos φ от 0,5 инд. до 1 и
 - для температуры окружающего воздуха в месте расположения счетчиков в точках измерений от +15 °C до +35 °C.
- 7. Допускается замена измерительных трансформаторов и счетчиков электроэнергии на аналогичные утвержденных типов с метрологическими характеристиками не хуже, чем у перечисленных в табл. 1. Допускается замена УСПД на аналогичный соответствующего утвержденного типа. Замена оформляется актом в установленном на Красноярское БЕ ЗАО «Полюс» порядке. Акт хранится совместно с настоящим описанием типа АИИС КУЭ как его неотъемлемая часть.

Надежность применяемых в АИИС КУЭ компонентов:

- счетчик Альфа A1800 среднее время наработки на отказ не менее $T = 120\,000$ ч, среднее время восстановления $t_6 = 2$ ч;
- УСПД RTU-325L среднее время наработки на отказ не менее $T=100\ 000\$ ч, среднее время восстановления $t_{e} = 2$ ч;
- сервер коэффициент готовности не менее $K_{\Gamma} = 0.999$, среднее время восстановления $t_6 = 1$ ч;
- УСПД RTU-327L среднее время наработки на отказ не менее $T=70\,000\,$ ч, среднее время восстановления $t_6 = 2$ ч;
- COEB коэффициент готовности не менее K_{Γ} = 0,9999, среднее время восстановления t_6 не более 168 ч.

Надежность системных решений:

- резервирование питания УСПД с помощью источника бесперебойного питания;
- резервирование каналов связи: информация о результатах измерений может передаваться в организации-участники ОРЭМ посредством сети сотовой связи стандарта GSM. В случае аварийного отсутствия связи предусмотрен сбор информации непосредственно со

счетчиков, посредством переносного инженерного пульта (ноутбук), с последующей загрузкой ее в базу данных ИВК с помощью программных средств ПО «АльфаЦЕНТР».

Регистрация событий:

- а) в журнале событий счетчика:
 - параметрирования,
 - попыток несанкционированного доступа,
 - изменения текущих значений времени и даты при синхронизации времени,
 - отсутствия напряжения при наличии тока в измерительных цепях,
 - перерывов питания;
- б) в журнале событий УСПД:
 - даты начала регистрации измерений,
 - перерывов электропитания,
 - потери и восстановления связи со счетчиками;
 - программных и аппаратных перезапусков,
 - корректировки времени в УСПД и каждом счетчике,
 - изменения ПО и параметрирования УСПД;
- в) в журнале событий ИВК:
 - несанкционированного изменения ПО и параметрирования АИИС КУЭ,
 - перерывов электропитания,
 - потери и восстановления связи со счетчиками,
 - программных и аппаратных перезапусков,
 - корректировки времени в ИВК, УСПД и каждом счетчике.

Защищенность применяемых компонентов:

- а) механическая защита от несанкционированного доступа и пломбирование:
- -путем пломбирования трансформаторов тока, промежуточных клеммников расположенных в шкафах кроссовых вторичных цепей измерения и шкафах учета, испытательных коробок, клеммников самих электросчетчиков, клеммников цепей передачи информации от электросчетчиков к УСПД, а также клеммников самих УСПД;
- -путем пломбирования элементов счетчиков и УСПД, с помощью которых может осуществляться изменение параметров настройки устройств, системного времени и накопленных данных;
- -путем ограничения доступа к трансформаторам тока и напряжения, счетчикам, УСПД и серверу БД (размещением технических средств в закрываемых помещениях и закрываемых шкафах);
 - б) защита информации на программном уровне:
- установка трех паролей для различного уровня доступа к параметрированию счетчика (пользователя, предприятия, энергоснабжающей организации);
- разграничение полномочий пользователей по доступу к изменению параметров, времени и данных (установка пароля на сервер, основной и дополнительный пароль загрузки);
 - разграничение доступа к последовательным, параллельным и другим портам ЭВМ;
- автоматизированная идентификация пользователей и эксплуатационного персонала при обращении к ресурсам системы;
- регистрация входа (выхода) пользователей в систему, обращений к ресурсам и фактов попыток нарушения доступа;
- регистрация событий коррекции системного времени и данных по электроэнергии и мошности;

– обнаружение и регистрация искажений штатного состояния рабочей среды ЭВМ, вызванного вирусами, ошибками оператора, техническими сбоями или действиями посторонних лиц.

Глубина хранения информации:

- счетчик тридцатиминутный профиль нагрузки в двух направлениях не менее 35 суток; при отключении питания не менее 30 лет;
- УСПД суточные данные о тридцатиминутных приращениях электроэнергии по каждому каналу и электроэнергии потребленной за месяц по каждому каналу не менее 35 суток; при отключении питания не менее 5 лет;
- ИВК хранение результатов измерений и информации о состоянии средств измерений не менее 5 лет.

Знак утверждения типа

Знак утверждения типа наносится на титульные листы эксплуатационной документации АИИС КУЭ типографским способом.

Комплектность средства измерений

Комплектность АИИС КУЭ приведена в табл. 4

Таблица 4 — Комплектность АИИС КУЭ КБЕ ЗАО «Полюс»

1 Трансформатор тока ТФЗМ-110Б-IV УХЛІ 6 2 Трансформатор тока ТФЗМ-110Б-IV 6 3 Трансформатор тока ТЛИ-10-2 6 4 Трансформатор тока ТРU 40.23 12 5 Трансформатор тока ТОЛ-10-I 9 6 Трансформатор тока ТОЛ-СЭЩ-10 9 7 Трансформатор напряжения НКФ-110-57 6 8 Трансформатор напряжения НКФ-110 6 9 Трансформатор напряжения НКФ-110 6 9 Трансформатор напряжения НКФ-110 9 11 Трансформатор напряжения ТГР 4.0 9 12 Трансформатор напряжения ЗНОЛ-6-6УЗ 9 13 Электросчетчик Альфа А1800 16 14 Контрольер RTU-325L 6 15 Контрольер RTU-327L 1 16 Шкаф УССВ НКУ Метроника МС-225 1 17 Приемни	Таблица 4— Комплектность АИИС КУЭ КБЕ ЗА	T	
2 Транформатор тока ТФЗМ-110Б-IV 6 3 Трансформатор тока TJIM-10-2 6 4 Трансформатор тока TPU 40.23 12 5 Трансформатор тока TOJI-10-I 9 6 Трансформатор тока TOJI-CЭЩ-10 9 7 Трансформатор напряжения НКФ-110-57 6 8 Трансформатор напряжения НКФ-110 6 9 Трансформатор напряжения НАМИТ-10-1 2 10 Трансформатор напряжения ЗНОЛ 06-6УЗ 9 11 Трансформатор напряжения ЗНОЛ 06-6УЗ 9 12 Трансформатор напряжения ЗНОЛ 06-6УЗ 9 13 Электросчетчик Альфа А1800 16 14 Контроллер RTU-325L 6 15 Контроллер RTU-327L 1 16 Шкаф УССВ НКУ Метроника MC-225 1 17 Приемник УССВ УССВ-16HVS 2 18 Источник бесперебойного питания ИБП АРС 1000 ВА 1 19 Источник бесперебойного питания ИБП АРС Васк-UPS 500 6 20 Сервер базы данных НР РоСіапт DL180 G6 1 </td <td>Наименование</td> <td>Обозначение</td> <td>Кол-во</td>	Наименование	Обозначение	Кол-во
3 Трансформатор тока TЛМ-10-2 6 4 Трансформатор тока TPU 40.23 12 5 Трансформатор тока TOЛ-10-1 9 6 Трансформатор тока TOЛ-CЭЩ-10 9 7 Трансформатор тока TOЛ-СЭЩ-10 9 7 Трансформатор напряжения HKФ-110-57 6 8 Трансформатор напряжения HKФ-110 6 9 Трансформатор напряжения HAMИТ-10-1 2 10 Трансформатор напряжения TJP 4.0 9 11 Трансформатор напряжения 3HOЛ 06-6V3 9 12 Трансформатор напряжения 3HOЛ-СЭЩ-6 9 13 Электросчетчик Альфа A1800 16 14 Контроллер RTU-325L 6 15 Контроллер RTU-327L 1 16 Шкаф УССВ HKУ Метроника MC-225 1 17 Приемник УССВ УССВ-16HVS 2 18 Источник бесперебойного питания ИБП АРС 1000 ВА 1 19 Источник бесперебойного питания ИБП АРС Васк-UPS 500 6 20 Сервер базы данных HP ProLiant DL180 G6 1			
4 Трансформатор тока TPU 40.23 12 5 Трансформатор тока TOЛ-10-I 9 6 Трансформатор тока TOЛ-CЭЩ-10 9 7 Трансформатор напряжения HKФ-110-57 6 8 Трансформатор напряжения HKФ-110 6 9 Трансформатор напряжения HAМИТ-10-1 2 10 Трансформатор напряжения TJP 4.0 9 11 Трансформатор напряжения 3HOЛ-6-6У3 9 12 Трансформатор напряжения 3HOЛ-CЭЩ-6 9 13 Электросчетчик Альфа A1800 16 14 Контроллер RTU-325L 6 15 Контроллер RTU-327L 1 16 Шкаф УССВ НКУ Метроника МС-225 1 17 Приемник УССВ УССВ-16HVS 2 18 Источник бесперебойного питания ИБП АРС 1000 ВА 1 19 Источник бесперебойного питания ИБП АРС Васк-UPS 500 6 20 Сервер базы данных НР РгоLiant DL180 G6 1 21 Программное обеспечение «АльфаЦЕНТР», версия 11.07.03.01 «МеterCat Альфа A1800» 1 22 Ведомость эксплуатационной докум	1 1 1		
5 Трансформатор тока ТОЛ-10-I 9 6 Трансформатор тока ТОЛ-СЭЩ-10 9 7 Трансформатор напряжения НКФ-110-57 6 8 Трансформатор напряжения НКФ-110 6 9 Трансформатор напряжения НАМИТ-10-1 2 10 Трансформатор напряжения ЗНОЛ 06-6УЗ 9 11 Трансформатор напряжения ЗНОЛ-СЭЩ-6 9 12 Трансформатор напряжения ЗНОЛ-СЭЩ-6 9 13 Электросчетчик Альфа A1800 16 14 Контроллер RTU-325L 6 15 Контроллер RTU-327L 1 16 Шкаф УССВ НКУ Метроника МС-225 1 17 Приемник УССВ УССВ-16HVS 2 18 Источник бесперебойного питания ИБП АРС 1000 ВА 1 19 Источник бесперебойного питания ИБП АРС Васк-UPS 500 6 20 Сервер базы данных НР Росіапt DL180 G6 1 21 Программное обеспечение «АльфаЦЕНТР», версия 11.07.03.01 «МеterCat Альфа A1800» 1 22 Ведомость эксплуатационной документации ИСЭМ.422200.021.ЭД 1 23	3 Трансформатор тока	ТЛМ-10-2	6
6 Трансформатор тока ТОЛ-СЭЩ-10 9 7 Трансформатор напряжения НКФ-110-57 6 8 Трансформатор напряжения НКФ-110 6 9 Трансформатор напряжения НАМИТ-10-1 2 10 Трансформатор напряжения ЗНОЛ 06-6УЗ 9 11 Трансформатор напряжения ЗНОЛ-СЭЩ-6 9 13 Электросчетчик Альфа А1800 16 14 Контроллер RTU-325L 6 15 Контроллер RTU-327L 1 16 Шкаф УССВ НКУ Метроника МС-225 1 17 Приемник УСВ УССВ-16НVS 2 18 Источник бесперебойного питания ИБП АРС 1000 ВА 1 19 Источник бесперебойного питания ИБП АРС Васк-UPS 500 6 20 Сервер базы данных НР РгоLiant DL180 G6 1 21 Программное обеспечение «АльфаЦЕНТР», версия 11.07.03.01 «МетегСат Альфа A1800» 1 22 Ведомость эксплуатационной документации ИСЭМ.422200.021.ЭД 1 23 Инструкция по эксплуатационной документации ИСЭМ.422200.021.ЭД 1 24 Паспорт-формуляр ИСЭМ.422200.021.В6 1 <td>4 Трансформатор тока</td> <td>TPU 40.23</td> <td>12</td>	4 Трансформатор тока	TPU 40.23	12
7 Трансформатор напряжения HKΦ-110-57 6 8 Трансформатор напряжения HKΦ-110 6 9 Трансформатор напряжения HAMИТ-10-1 2 10 Трансформатор напряжения 3HOЛ 06-6У3 9 11 Трансформатор напряжения 3HOЛ-СЭЩ-6 9 13 Электросчетчик Альфа A1800 16 14 Контроллер RTU-325L 6 15 Контроллер RTU-327L 1 16 Шкаф УССВ HKУ Метроника МС-225 1 17 Приемник УССВ УССВ-16HVS 2 18 Источник бесперебойного питания ИБП АРС 1000 ВА 1 19 Источник бесперебойного питания ИБП АРС Васк-UPS 500 6 20 Сервер базы данных HP ProLiant DL180 G6 1 21 Программное обеспечение «АльфаЦЕНТР», версия 11.07.03.01 «Метегсат Альфа A1800» 1 22 Ведомость эксплуатационной документации ИСЭМ.422200.021.ЭД 1 23 Инструкция по эксплуатационной документации ИСЭМ.422200.021.ЭД 1 24 Паспорт-формуляр ИСЭМ.422200.021.ИЭ 1 25 Массив входных данных ИСЭМ.422200.021.В6 1 26 Состав выходных данных ИСЭМ.422200	5 Трансформатор тока		
8 Трансформатор напряжения НКФ-110 6 9 Трансформатор напряжения НАМИТ-10-1 2 10 Трансформатор напряжения ТЈР 4.0 9 11 Трансформатор напряжения ЗНОЛ 06-6УЗ 9 12 Трансформатор напряжения ЗНОЛ-СЭЩ-6 9 13 Электросчетчик Альфа A1800 16 14 Контроллер RTU-325L 6 15 Контроллер RTU-327L 1 16 Шкаф УССВ НКУ Метроника МС-225 1 17 Приемник УССВ УССВ-16HVS 2 18 Источник бесперебойного питания ИБП АРС 1000 ВА 1 19 Источник бесперебойного питания ИБП АРС Васк-UPS 500 6 20 Сервер базы данных НР РгоLiant DL180 G6 1 21 Программное обеспечение «АльфаЦЕНТР», версия 11.07.03.01 «МеterCat Альфа A1800» 1 «Конфигуратор RTU-325» 1 22 Ведомость эксплуатационной документации ИСЭМ.422200.021.ЭД 1 23 Инструкция по эксплуатации КТС ИСЭМ.422200.021.ИЭ 1 24 Паспорт-формуляр ИСЭМ.422200.021.В6 1 25 Мас	6 Трансформатор тока	1	
9 Трансформатор напряжения HAMИТ-10-1 2 10 Трансформатор напряжения TJP 4.0 9 11 Трансформатор напряжения 3HOЛ 06-6У3 9 12 Трансформатор напряжения 3HOЛ-СЭЩ-6 9 13 Электросчетчик Альфа A1800 16 14 Контроллер RTU-325L 6 15 Контроллер RTU-327L 1 16 Шкаф УССВ HKV Метроника MC-225 1 17 Приемник УССВ УССВ-16HVS 2 18 Источник бесперебойного питания ИБП АРС 1000 ВА 1 19 Источник бесперебойного питания ИБП АРС Васк-UPS 500 6 20 Сервер базы данных HP ProLiant DL180 G6 1 21 Программное обеспечение «АльфаЦЕНТР», версия 11.07.03.01 «МеterCat Альфа A1800» 1 «Конфигуратор RTU-325» 1 «АльфаЦЕНТР» АС_SE 1 22 Ведомость эксплуатационной документации ИСЭМ.422200.021.ЭД 1 23 Инструкция по эксплуатации КТС ИСЭМ.422200.021.ИЭ 1 24 Паспорт-формуляр ИСЭМ.422200.021.В6 1 25 Массив входных данных ИСЭМ.422200.021.В6 1 26 Состав выходных данных	7 Трансформатор напряжения	НКФ-110-57	6
10 Трансформатор напряжения ТЈР 4.0 9 11 Трансформатор напряжения ЗНОЛ 06-6УЗ 9 12 Трансформатор напряжения ЗНОЛ-СЭЩ-6 9 13 Электросчетчик Альфа A1800 16 14 Контроллер RTU-325L 6 15 Контроллер RTU-327L 1 16 Шкаф УССВ НКУ Метроника МС-225 1 17 Приемник УССВ УССВ-16НVS 2 18 Источник бесперебойного питания ИБП АРС 1000 ВА 1 19 Источник бесперебойного питания ИБП АРС Васк-UPS 500 6 20 Сервер базы данных НР РгоLiant DL180 G6 1 21 Программное обеспечение «АльфаЦЕНТР», версия 11.07.03.01 «МеterCat Альфа A1800» 1 «Конфигуратор RTU-325» 1 22 Ведомость эксплуатационной документации ИСЭМ.422200.021.ЭД 1 23 Инструкция по эксплуатации КТС ИСЭМ.422200.021.ИЭ 1 24 Паспорт-формуляр ИСЭМ.422200.021.В6 1 25 Массив входных данных ИСЭМ.422200.021.В6 1 26 Состав выходных данных ИСЭМ.422200.021.В8 1	8 Трансформатор напряжения	НКФ-110	6
11 Трансформатор напряжения 3HOЛ 06-6У3 9 12 Трансформатор напряжения 3HOЛ-СЭЩ-6 9 13 Электросчетчик Альфа A1800 16 14 Контроллер RTU-325L 6 15 Контроллер RTU-327L 1 16 Шкаф УССВ HKУ Метроника MC-225 1 17 Приемник УССВ УССВ-16HVS 2 18 Источник бесперебойного питания ИБП АРС 1000 ВА 1 19 Источник бесперебойного питания ИБП АРС Васк-UPS 500 6 20 Сервер базы данных HP ProLiant DL180 G6 1 21 Программное обеспечение «АльфаЦЕНТР», версия 11.07.03.01 «МеterCat Альфа A1800» 1 «Конфигуратор RTU-325» 1 «Хонфигуратор RTU-325» 1 22 Ведомость эксплуатационной документации ИСЭМ.422200.021.ЭД 1 23 Инструкция по эксплуатации КТС ИСЭМ.422200.021.ИЭ 1 24 Паспорт-формуляр ИСЭМ.422200.021.В6 1 25 Массив входных данных ИСЭМ.422200.021.В6 1 26 Состав выходных данных ИСЭМ.422200.021.В8 1 27 Технологическая инструкция ИСЭМ.422200.021.И2 1	9 Трансформатор напряжения	НАМИТ-10-1	
12 Трансформатор напряжения 3HOЛ-СЭЩ-6 9 13 Электросчетчик Альфа A1800 16 14 Контроллер RTU-325L 6 15 Контроллер RTU-327L 1 16 Шкаф УССВ HKУ Метроника MC-225 1 17 Приемник УССВ УССВ-16HVS 2 18 Источник бесперебойного питания ИБП АРС 1000 ВА 1 19 Источник бесперебойного питания ИБП АРС Васк-UPS 500 6 20 Сервер базы данных HP ProLiant DL180 G6 1 21 Программное обеспечение «АльфаЦЕНТР», версия 11.07.03.01 «МеterCat Альфа A1800» 1 «Конфигуратор RTU-325» 1 «ХонфаЦЕНТР» АС_SE 1 22 Ведомость эксплуатационной документации ИСЭМ.422200.021.ЭД 1 23 Инструкция по эксплуатации КТС ИСЭМ.422200.021.ИЭ 1 24 Паспорт-формуляр ИСЭМ.422200.021.ИЭ 1 25 Массив входных данных ИСЭМ.422200.021.В6 1 26 Состав выходных данных ИСЭМ.422200.021.В8 1 27 Технологическая инструкция ИСЭМ.422200.021.И2 1	10 Трансформатор напряжения	TJP 4.0	9
13 ЭлектросчетчикАльфа A18001614 КонтроллерRTU-325L615 КонтроллерRTU-327L116 Шкаф УССВHKУ Метроника МС-225117 Приемник УССВУССВ-16НVS218 Источник бесперебойного питанияИБП АРС 1000 ВА119 Источник бесперебойного питанияИБП АРС Васк-UPS 500620 Сервер базы данныхHP ProLiant DL180 G6121 Программное обеспечение «АльфаЦЕНТР», версия 11.07.03.01«МеterCat Альфа A1800»1«АльфаЦЕНТР» АС_SE122 Ведомость эксплуатационной документацииИСЭМ.422200.021.ЭД123 Инструкция по эксплуатации КТСИСЭМ.422200.021.ИЭ124 Паспорт-формулярИСЭМ.422200.021.ФО125 Массив входных данныхИСЭМ.422200.021.B6126 Состав выходных данныхИСЭМ.422200.021.И2127 Технологическая инструкцияИСЭМ.422200.021.И21	11 Трансформатор напряжения	ЗНОЛ 06-6У3	9
14 Контроллер RTU-325L 6 15 Контроллер RTU-327L 1 16 Шкаф УССВ HKУ Метроника МС-225 1 17 Приемник УССВ УССВ-16HVS 2 18 Источник бесперебойного питания ИБП АРС 1000 ВА 1 19 Источник бесперебойного питания ИБП АРС Васк-UPS 500 6 20 Сервер базы данных HP ProLiant DL180 G6 1 21 Программное обеспечение «АльфаЦЕНТР», версия 11.07.03.01 «МеterCat Альфа A1800» 1 «Конфигуратор RTU-325» 1 «АльфаЦЕНТР» АС_SE 1 22 Ведомость эксплуатационной документации ИСЭМ.422200.021.ЭД 1 23 Инструкция по эксплуатации КТС ИСЭМ.422200.021.ИЭ 1 24 Паспорт-формуляр ИСЭМ.422200.021.ВО 1 25 Массив входных данных ИСЭМ.422200.021.В6 1 26 Состав выходных данных ИСЭМ.422200.021.В8 1 27 Технологическая инструкция ИСЭМ.422200.021.И2 1	12 Трансформатор напряжения	ЗНОЛ-СЭЩ-6	9
15 Контроллер RTU-327L 1 16 Шкаф УССВ HKУ Метроника МС-225 1 17 Приемник УССВ УССВ-16HVS 2 18 Источник бесперебойного питания ИБП АРС 1000 ВА 1 19 Источник бесперебойного питания ИБП АРС Васк-UPS 500 6 20 Сервер базы данных HP ProLiant DL180 G6 1 21 Программное обеспечение «АльфаЦЕНТР», версия 11.07.03.01 «МеterCat Альфа A1800» 1 «Конфигуратор RTU-325» 1 «АльфаЦЕНТР» АС_SE 1 22 Ведомость эксплуатационной документации ИСЭМ.422200.021.ЭД 1 23 Инструкция по эксплуатации КТС ИСЭМ.422200.021.ИЭ 1 24 Паспорт-формуляр ИСЭМ.422200.021.ИЭ 1 25 Массив входных данных ИСЭМ.422200.021.В6 1 26 Состав выходных данных ИСЭМ.422200.021.В8 1 27 Технологическая инструкция ИСЭМ.422200.021.И2 1	13 Электросчетчик	Альфа А1800	16
16 Шкаф УССВНКУ Метроника МС-225117 Приемник УССВУССВ-16HVS218 Источник бесперебойного питанияИБП АРС 1000 ВА119 Источник бесперебойного питанияИБП АРС Васк-UPS 500620 Сервер базы данныхНР ProLiant DL180 G6121 Программное обеспечение «АльфаЦЕНТР», версия 11.07.03.01«МеterCat Альфа А1800»1«Конфигуратор RTU-325»«Конфигуратор RTU-325»122 Ведомость эксплуатационной документацииИСЭМ.422200.021.ЭД123 Инструкция по эксплуатации КТСИСЭМ.422200.021.ИЭ124 Паспорт-формулярИСЭМ.422200.021.ФО125 Массив входных данныхИСЭМ.422200.021.В6126 Состав выходных данныхИСЭМ.422200.021.В8127 Технологическая инструкцияИСЭМ.422200.021.И21	14 Контроллер	RTU-325L	6
17 Приемник УССВУССВ-16HVS218 Источник бесперебойного питанияИБП АРС 1000 ВА119 Источник бесперебойного питанияИБП АРС Васк-UPS 500620 Сервер базы данныхHP ProLiant DL180 G6121 Программное обеспечение «АльфаЦЕНТР», версия 11.07.03.01«МеterCat Альфа А1800»1«Конфигуратор RTU-325»1«АльфаЦЕНТР» АС_SE122 Ведомость эксплуатационной документацииИСЭМ.422200.021.ЭД123 Инструкция по эксплуатации КТСИСЭМ.422200.021.ИЭ124 Паспорт-формулярИСЭМ.422200.021.ФО125 Массив входных данныхИСЭМ.422200.021.В6126 Состав выходных данныхИСЭМ.422200.021.В8127 Технологическая инструкцияИСЭМ.422200.021.И21	15 Контроллер	RTU-327L	1
18 Источник бесперебойного питанияИБП АРС 1000 ВА119 Источник бесперебойного питанияИБП АРС Васк-UPS 500620 Сервер базы данныхHP ProLiant DL180 G6121 Программное обеспечение «АльфаЦЕНТР», версия 11.07.03.01«МеterCat Альфа А1800»122 Ведомость эксплуатационной документацииИСЭМ.422200.021.ЭД123 Инструкция по эксплуатации КТСИСЭМ.422200.021.ЭД124 Паспорт-формулярИСЭМ.422200.021.ФО125 Массив входных данныхИСЭМ.422200.021.В6126 Состав выходных данныхИСЭМ.422200.021.В8127 Технологическая инструкцияИСЭМ.422200.021.И21	16 Шкаф УССВ	НКУ Метроника МС-225	1
19 Источник бесперебойного питанияИБП APC Back-UPS 500620 Сервер базы данныхHP ProLiant DL180 G6121 Программное обеспечение «АльфаЦЕНТР», версия 11.07.03.01«МеterCat Альфа A1800»1«Конфигуратор RTU-325»1«АльфаЦЕНТР» АС_SE122 Ведомость эксплуатационной документацииИСЭМ.422200.021.ЭД123 Инструкция по эксплуатации КТСИСЭМ.422200.021.ИЭ124 Паспорт-формулярИСЭМ.422200.021.ФО125 Массив входных данныхИСЭМ.422200.021.В6126 Состав выходных данныхИСЭМ.422200.021.В8127 Технологическая инструкцияИСЭМ.422200.021.И21	17 Приемник УССВ	УССВ-16HVS	2
20 Сервер базы данныхHP ProLiant DL180 G6121 Программное обеспечение «АльфаЦЕНТР», версия 11.07.03.01«МеterCat Альфа A1800»1«Конфигуратор RTU-325»1«АльфаЦЕНТР» АС_SE122 Ведомость эксплуатационной документацииИСЭМ.422200.021.ЭД123 Инструкция по эксплуатации КТСИСЭМ.422200.021.ИЭ124 Паспорт-формулярИСЭМ.422200.021.ФО125 Массив входных данныхИСЭМ.422200.021.В6126 Состав выходных данныхИСЭМ.422200.021.В8127 Технологическая инструкцияИСЭМ.422200.021.И21	18 Источник бесперебойного питания	ИБП АРС 1000 ВА	1
21 Программное обеспечение «АльфаЦЕНТР», версия 11.07.03.01«МеterCat Альфа A1800»122 Ведомость эксплуатационной документации«Конфигуратор RTU-325»123 Инструкция по эксплуатации КТСИСЭМ.422200.021.ЭД124 Паспорт-формулярИСЭМ.422200.021.ИЭ125 Массив входных данныхИСЭМ.422200.021.В6126 Состав выходных данныхИСЭМ.422200.021.В8127 Технологическая инструкцияИСЭМ.422200.021.И21	19 Источник бесперебойного питания	ИБП APC Back-UPS 500	6
версия 11.07.03.01«Конфигуратор RTU-325»122 Ведомость эксплуатационной документацииИСЭМ.422200.021.ЭД123 Инструкция по эксплуатации КТСИСЭМ.422200.021.ИЭ124 Паспорт-формулярИСЭМ.422200.021.ФО125 Массив входных данныхИСЭМ.422200.021.В6126 Состав выходных данныхИСЭМ.422200.021.В8127 Технологическая инструкцияИСЭМ.422200.021.И21	20 Сервер базы данных	HP ProLiant DL180 G6	1
«АльфаЦЕНТР» АС_SE122 Ведомость эксплуатационной документацииИСЭМ.422200.021.ЭД123 Инструкция по эксплуатации КТСИСЭМ.422200.021.ИЭ124 Паспорт-формулярИСЭМ.422200.021.ФО125 Массив входных данныхИСЭМ.422200.021.В6126 Состав выходных данныхИСЭМ.422200.021.В8127 Технологическая инструкцияИСЭМ.422200.021.И21	21 Программное обеспечение «АльфаЦЕНТР»,	«MeterCat Альфа A1800»	1
22 Ведомость эксплуатационной документации ИСЭМ.422200.021.ЭД 1 23 Инструкция по эксплуатации КТС ИСЭМ.422200.021.ИЭ 1 24 Паспорт-формуляр ИСЭМ.422200.021.ФО 1 25 Массив входных данных ИСЭМ.422200.021.В6 1 26 Состав выходных данных ИСЭМ.422200.021.В8 1 27 Технологическая инструкция ИСЭМ.422200.021.И2 1	версия 11.07.03.01	«Конфигуратор RTU-325»	1
23 Инструкция по эксплуатации КТС ИСЭМ.422200.021.ИЭ 1 24 Паспорт-формуляр ИСЭМ.422200.021.ФО 1 25 Массив входных данных ИСЭМ.422200.021.В6 1 26 Состав выходных данных ИСЭМ.422200.021.В8 1 27 Технологическая инструкция ИСЭМ.422200.021.И2 1		«АльфаЦЕНТР» АС_SE	1
24 Паспорт-формулярИСЭМ.422200.021.ФО125 Массив входных данныхИСЭМ.422200.021.В6126 Состав выходных данныхИСЭМ.422200.021.В8127 Технологическая инструкцияИСЭМ.422200.021.И21	22 Ведомость эксплуатационной документации	ИСЭМ.422200.021.ЭД	1
24 Паспорт-формулярИСЭМ.422200.021.ФО125 Массив входных данныхИСЭМ.422200.021.В6126 Состав выходных данныхИСЭМ.422200.021.В8127 Технологическая инструкцияИСЭМ.422200.021.И21	23 Инструкция по эксплуатации КТС	ИСЭМ.422200.021.ИЭ	1
26 Состав выходных данных ИСЭМ.422200.021.В8 1 27 Технологическая инструкция ИСЭМ.422200.021.И2 1	24 Паспорт-формуляр	ИСЭМ.422200.021.ФО	1
27 Технологическая инструкция ИСЭМ.422200.021.И2 1	25 Массив входных данных	ИСЭМ.422200.021.В6	1
27 Технологическая инструкция ИСЭМ.422200.021.И2 1	26 Состав выходных данных	ИСЭМ.422200.021.В8	1
17	27 Технологическая инструкция	ИСЭМ.422200.021.И2	1
	28 Руководство пользователя	ИСЭМ.422200.021.И3	1

Наименование	Обозначение	Кол-во
29 Инструкция по формированию и ведению базы данных	ИСЭМ.422200.021.И4	1
30 Методика поверки	07-45/014 MΠ	1

Поверка

осуществляется по документу 07-45/014 МП «ГСИ. Система автоматизированная информационно-измерительная коммерческого учета электроэнергии Олимпиадинского и Благодатнинского ГОК Красноярской БЕ ЗАО «Полюс», утвержденному ГЦИ СИ ФБУ «Красноярский ЦСМ»25.09.2013 г.

Основные средства поверки:

- трансформаторов тока по ГОСТ 8.217-2003;
- трансформаторов напряжения по МИ 2845-2003, МИ 2925-2005 и/или по ГОСТ 8.216-2011;
- вольтамперфазометр Парма ВАФ-А по методике поверки, изложенной в разделе 7 «Поверка прибора» руководства по эксплуатации РА 1.007.001 РЭ и согласованной с ГЦИ СИ Тест-С.-Петербург в декабре 2004 г.;
- переносной компьютер с ПО «MeterCat Альфа A1800», «Конфигуратор RTU-325», «АльфаЦЕНТР» AC_SE.

Сведения о методиках (методах) измерений

«Методика измерений электрической энергии с использованием системы автоматизированной информационно-измерительной коммерческого учета электроэнергии Олимпиадинского и Благодатнинского ГОК Красноярской БЕ ЗАО «Полюс». Свидетельство об аттестации методики измерений N = 16.01.00291.015-2013 от 19.04.2013 г.

Нормативные и технические документы, устанавливающие требования к АИИС КУЭ КБЕ ЗАО «Полюс»

- 1. ГОСТ 22261-94 «Средства измерений электрических и магнитных величин. Общие технические условия»;
- 2. ГОСТ Р 8.596-2002 «ГСИ. Метрологическое обеспечение измерительных систем. Основные положения»;
- 3. РД 34.11.114-98 «Автоматизированные системы контроля и учета электроэнергии и мощности. Основные метрологические характеристики. Общие требования»;
- 4. Положение о порядке получения статуса субъекта оптового рынка и ведения реестра субъектов оптового рынка и электроэнергии и мощности. Автоматизированные информационно-измерительные системы коммерческого учета электрической энергии (мощности) субъекта ОРЭМ. Технические требования».

Рекомендации по областям применения в сфере государственного регулирования обеспечения единства измерений – при осуществлении торговли и товарообменных операций.

Изготовитель

ООО «ИЦ Спецэлектромонтаж», 660023, г. Красноярск, ул. Рейдовая, д. 68, оф. 3 - 13, тел./факс: (391) 263-60-65

Испытательный центр

Государственный центр испытаний средств измерений ФБУ «Государственный региональный центр стандартизации, метрологии и испытаний в Красноярском крае»

660093, г. Красноярск, ул. Вавилова, 1-А, тел.: (391) 236-30-80, факс: (391) 236-12-94 Аттестат аккредитации ГЦИ СИ ФБУ «Красноярский ЦСМ» по проведению испытаний средств измерений в целях утверждения типа № 30073-10 от 20.12.2010 г.

Ваместитель Руководителя		
Федерального агентства по техническому		
регулированию и метрологии		Ф.В. Булыгин
	« <u></u>	 2014 г.

М.п.