ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Радиометры-спектрометры для контроля объемной активности жидких сред МЖГ-040

Назначение средства измерений

Радиометры-спектрометры для контроля объемной активности жидких сред МЖГ-040 (далее радиометры-спектрометры МЖГ-040) предназначены для автоматизированного непрерывного измерения объёмной активности радионуклидов в жидкости, протекающей через измерительную емкость (как отдельных радионуклидов, так и их суммарной активности).

Описание средства измерений

Принцип действия радиометра-спектрометра МЖГ-040 основан на регистрации спектра амплитудного распределения гамма-излучения, испускаемого радионуклидами, присутствующими в непрерывно протекающей через заданную измерительную емкость контролируемой жидкой среде, определении скорости счета импульсов в пиках полного поглощения гамма-квантов с энергиями Еі и расчета объемной активности идентифицированных по Еі радионуклидов, с учетом эффективности регистрации гамма-квантов в пиках полного поглощения, которая устанавливается предварительно экспериментальным путем. Все операции производятся с использованием программного обеспечения ЛКВШ 10.359.0000.00 01.

Радиометр-спектрометр изготавливается в двух модификациях (исполнениях) МЖГ-040 и МЖГ-040-01, которые имеют унифицированное конструктивное исполнение и отличаются только типом используемого устройства детектирования.

В состав радиометра-спектрометра входят следующие основные модули:

- проточная измерительная емкость (ИЕ);
- модуль свинцовой пассивной защиты от внешнего фонового излучения с геометрией 4π , закрепленный на стальной рамной конструкции;
- устройство детектирования гамма-излучения сцинтилляционное цифровое:
 - УДС-ГЦ-63**x**63-485-АС модификация МЖГ-040;
 - УДС-ГЦ-63**х**160-485-АС модификация МЖГ-040-01;
- устройство контроля расхода контролируемой среды (реле потока);
- спектрометрический технологический многоканальный анализатор (CTMA) с встроенным технологическим контроллером.

Радиометр-спектрометр относится к изделиям мелкосерийного производства, для которых операции по окончательной сборке, наладке и настройке могут быть проведены только на месте эксплуатации в составе конкретного производственного объекта.

Для каждого варианта исполнениярадиометра-спектрометрапредусмотрено специальное «посадочное место» для размещения источников гамма-излучения типа ОСГИ-Р (№ г/р 40714-09), предназначенных для выполнения процедур периодической поверки.

Работа радиометра-спектрометра осуществляется под управлением оператора с ЭВМ (или оператором APM, при использовании радиометра-спектрометра в составе системы радиационного контроля).

Все операции по управлению измерениями и обработке аппаратурных гамма-спектров (построение математической модели спектра, идентификация изотопного состава, расчет значений объемной активности отдельных радионуклидов и оценка погрешности определения этих значений при доверительной вероятности P=0,95) полностью автоматизированы и проводятся в CTMA-01 с использованием специально разработанного программного обеспечения - СПО.

Общий вид радиометра-спектрометра представлен на рисунке 1.

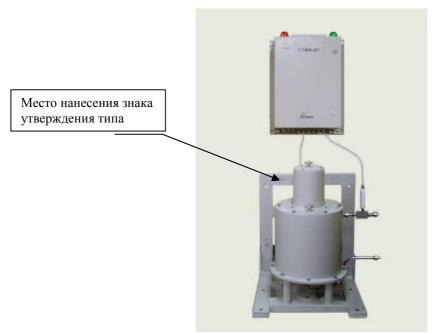


Рис. 1. Общий вид радиометра-спектрометра МЖГ-040 (МЖГ-040-01)

Программное обеспечение

Программное обеспечение (ПО) радиометра-спектрометра включает встроенное ПО, установленное на контроллере технологического анализатора СТМА-01 и прикладные программы, входящие в состав комплекса ПО для технического обслуживания (ТО) и установленные на внешней (по отношению к изделию) ПЭВМ.

Встроенное программное обеспечение полностью закрыто и защищено от стороннего вмешательства. Оно обеспечивает собственный самоконтроль, а также самоконтроль аппаратных узлов, выход на рабочий режим, измерение энергетического распределения гамма-излучения и обработку гамма-спектров, передачу от подчиненного узла результатов обработки по технологической сети RS-485 с использованием протокола Modbus/RTU в ПК.

Прикладное ПО для технического обслуживания, функционирующее на ПЭВМ, обеспечивает:

- передачу данных и команд по технологической сети RS-485 с ПЭВМ на CTMA-01;
- контроль аппаратных средств (блоков) радиометра-спектрометра;
- управление режимами функционирования радиометра-спектрометра;
- отображение полученного (измеренного) энергетического распределения регистрируемого излучения;
- расчет и отображение на экране оператора значений объемной активности радионуклидов;
- предотвращение несанкционированного доступа к настроечным параметрам радиометраспектрометра.

ПО радиометра-спектрометра с точки зрения влияния на его метрологические характеристики разделено на две части:

- метрологически значимые модули;
- метрологически не значимые модули.

Перечень метрологически значимых модулей ПО приведен в таблице 1.

Таблица 1 - Метрологически значимые модули ПО радиометра-спектрометра

	Наименование программного модуля	Идентификаци-
		онное наимено-
		вание программ-
		ного обеспечения
1	«Встроенное ПО», установленное на контроллере технологического анали-	MZHG-040
	затора СТМА-01	WELLO 010
2	Комплекс программ для выполнения полного гамма-спектрометрического	
	анализа аппаратурных спектров с визуальным контролем всех этапов и мо-	
	жет быть использован как для непосредственного выполнения процедур по-	
	верки измерительного канала и процедур настройки при техническом об-	SPEKTR_M.exe
	служивании, так и для инспекционной или ретроспективной обработки гра-	
	дуировочных и архивных гамма-спектров. Входит в состав комплекса ПОд-	
	ля технического обслуживания (ТО) и установлен на внешней ПЭВМ	
3	Программный модуль для автоматизации процедур периодической поверки	
	радиометра-спектрометра. Входит в состав комплекса ПОдля технического	Poverka R-S.exe
	обслуживания (ТО) и установлен на внешней ПЭВМ	

Перечень метрологически не значимых модулей ПО приведен в таблице 2. Таблица 2 - Метрологически не значимые модули ПО радиометра-спектрометра

_	Наименование программного модуля	Идентификаци-	
		онное наимено-	
		вание программ-	
		ного обеспечения	
1	Программный модуль для управления режимами функционирования ра-	ctrlstma.exe	
	диометра-спектрометра. Входит в состав комплекса ПОдля технического		
	обслуживания (ТО) и установлен на внешней ПЭВМ		

Идентификационные данные метрологически значимых модулей ПО радиометраспектрометра представлены в таблице 3.

Таблица 3 - Идентификационные данные метрологически значимых модулей ПОрадиометраспектрометра

Наименование программного обеспечения	Идентификаци- онное наимено- вание программного обеспечения	Номер	Цифровой идентифика- тор про- граммного обеспечения	Алгоритм вычисления цифрового идентификатора ПО
«Встроенное ПО», установленное на контроллере технологического анализатора СТМА-01	MZHG-040	1.0 и выше (до 1.9)	97DB	CRC16 для MODBUS /RTU
Комплекс программ для выполнения полного гамма-спектрометрического анализа аппаратурных спектров	SPEKTR_M.exe	2.0 и выше (до 2.9)	D659	CRC16 для MODBUS /RTU
Программный модуль для автоматизации процедур периодической поверки радиометра-спектрометра.	Poverka R-S.exe	1.0 и выше (до 1.9)	FAF2	CRC16 для MODBUS /RTU

Примечание. Контрольные суммы файлов относятся к текущим версиям программного обеспечения.

Уровень защиты программного обеспечения радиометра-спектрометра от непреднамеренных и преднамеренных изменений соответствует классу С в соответствии с МИ 3286-2010.

Метрологические и технические характеристики

Основные метрологические и технические характеристики радиометра-спектрометра МЖГ-040 представлены в таблице 4.

Таблица 4 - Основные характеристики радиометра-спектрометра

$N_{\underline{0}}$	Наименование характеристики	Значение
1.	Диапазон регистрируемых энергий гамма-излучения, кэВ	от 50 до 3000
2.	Пределы допускаемой основной относительной погрешности харак-	±1
	теристики преобразования (интегральная нелинейность), %	
3.	Относительное энергетическое разрешение гамма-спектрометра для	
	энергии 662 кэВ (по линии Сs-137), %:	
	- для исполнения МЖГ-040, не более	8,0
	- для исполнения МЖГ-040-01, не более	10,5
4.	Нестабильность характеристики преобразования спектрометрическо-	
	го тракта за 24 ч непрерывной работы, %, не более	2
5.	Максимальная входная статистическая загрузка спектрометрическо-	
	го тракта, имп/с, не менее	100 000
6.	Базовые значения эффективности регистрации (для энергий: 81,0	
	кэВ, 121,8 кэВ, 344,3 кэВ, 356,0 кэВ, 661,7 кэВ, 778,9 кэВ, 964,0 кэВ,	
	1173,2 кэВ и 1332,5 кэВ) в пике полного поглощения для положения	
	«Калибровка», отн. ед.:	
	- для исполнения МЖГ-040 (в «ИЕ» воздух)	$1,1\cdot10^{-4}; 8,0\cdot10^{-4}; 2,39\cdot10^{-3};$
		$2,37\cdot10^{-3}; 1,77\cdot10^{-3}; 1,50\cdot10^{-3};$
		$1,35\cdot10^{-3}$; $1,18\cdot10^{-3}$; $1,07\cdot10^{-3}$.
	- для исполнения МЖГ-040 (в «ИЕ» вода, E=661,7 кэВ и E=1332,5 кэВ)	$9,5\cdot10^{-4}$; $6,8\cdot10^{-4}$.
	- для исполнения МЖГ-040-01 (в «ИЕ» воздух)	$3,8\cdot10^{-4}$; $1,26\cdot10^{-3}$; $3,97\cdot10^{-3}$;
		$3,95\cdot10^{-3}$; $3,2\cdot10^{-3}$; $2,7\cdot10^{-3}$;
		$2,47\cdot10^{-3}$; $2,23\cdot10^{-3}$; $2,10\cdot10^{-3}$.
	- для исполнения МЖГ-040-01 (в «ИЕ» вода, E=661,7 кэВ и E=1332,5 кэВ)	$1,75\cdot10^{-3}$; $1,32\cdot10^{-3}$.
7.	Базовые значения эффективности регистрации (для энергий: 81,0 кэВ,	
	165,9 кэВ, 356,0 кэВ, 661,7 кэВ, 1173,2 кэВ и 1332,5 кэВ) в пике полного	
	поглощения для рабочей геометрии измерения «ИЕ», отн. ед.:	
	- для исполнения МЖГ-040	$6,4\cdot10^{-3}$; $8,6\cdot10^{-3}$; $7,7\cdot10^{-3}$; $5,6\cdot10^{-3}$; $3,3\cdot10^{-3}$; $2,8\cdot10^{-3}$.
		5,6.10°; 3,3.10°; 2,8.10°.
		1 72 10-2, 2 2 10-2, 2 0 10-2,
	- для исполнения МЖГ-040-01	$1,73 \cdot 10^{-2}; 2,3 \cdot 10^{-2}; 2,0 \cdot 10^{-2}; 1,91 \cdot 10^{-2}; 1,42 \cdot 10^{-2}; 8,3 \cdot 10^{-3}.$
_		1,91 10 , 1,42 10 , 6,5 10 .
8.	Диапазон измерений объёмной активности радионуклида Cs-137,	3
	Бк/м ³	от 1·10 ³ до 1·10 ⁸
9.	Пределы допускаемой относительной погрешности при измерении	
	объемной активности, %	±50
10.	Пределы допускаемой относительной не исключенной систематиче-	
	ской погрешности при измерении объемной активности, %	±7
11.		
	характеристики преобразования:	
	- при изменении температуры, %/°С	±0,1
	- при изменении напряжения питания от 176 до 253 В, %	±1
		•

Продолжение таблицы 4

12.	Время установления рабочего режима, минут, не более	30
13.	Напряжение питания от промышленных сетей переменного тока	
	частотой 50 (±1) Гц, В	220^{+33}_{-44}
14.	Потребляемая мощность, В.А, не более	100
15.	Условия эксплуатации:	
	- температура окружающего воздуха, °С	от 5 до 50
	- атмосферное давление, кПа	от 84 до 106,7
	- относительная влажность воздуха, %	до 80 при +35°C
16.	Средняя наработка на отказ, ч	20 000
	Средний срок службы, лет	30 (при условии за-
		мены отдельных со-
		ставных частей по
		мере выработки их
		pecypca)

Радиометр-спектрометр имеет сейсмостойкое исполнение по категории I согласно НП-031-01. По месту установки радиометр-спектрометр соответствует группе A, а по функциональному назначению исполнению 1 - по РД 25 818-87 (землетрясение 7 баллов по шкале MSK-64, высота размещения до +50 м от нулевой отметки).

По устойчивости к воздействию атмосферного давления радиометр-спектрометр соответствует группе P1 по ГОСТ P 52931-2008 (давление от 84 до 106,7 кПа, размещение до 1000 м над уровнем моря).

По устойчивости к воздействиям температуры и влажности окружающего воздуха ТС радиометра-спектрометра соответствуют группе В4 по ГОСТ Р 52931-2008 (температурный диапазон от плюс 5 $^{\circ}$ C до плюс 50 $^{\circ}$ C; относительная влажность окружающего воздуха до 80 % при температуре плюс 35 $^{\circ}$ C).

По устойчивости к воздействию синусоидальных вибраций радиометр-спектрометр относится к группе V4 по ГОСТ Р 52931-2008 (диапазон частот от 10 до 120 Γ ц, амплитуда смещения 0,15мм).

По устойчивости к электромагнитным воздействиям радиометр-спектрометр соответствует группе исполнения III и критерию качества функционирования А по ГОСТ Р 50746-2000 в условиях эксплуатации при электромагнитной обстановке средней жесткости.

По устойчивости к воздействию пыли и воды устройства детектирования радиометраспектрометра соответствуют исполнению IP55, а CTMA-01соответствует исполнению IP54 по ГОСТ 14254.

Знак утверждения типа

Знак утверждения типа наносится:

- на маркировочную табличку (шильд), прикрепленную к корпусу радиометраспектрометра;
- на титульный лист руководства по эксплуатации методом компьютерной графики.

Комплектность средства измерений

В комплект поставки радиометра-спектрометра МЖГ-040 входят составные части и эксплуатационная документация, указанные в таблице 5.

Таблица 5 - Комплект поставки радиометра-спектрометра

Обозначение	Наименование	Кол-	Примеча- ние
ЛКВШ 06.362.0000.00 ТУ	Модификация МЖГ-040		
	Устройство спектрометрическое технологическое СТУ-040 ДЦКИ.412131.020, в составе:	1	
	Устройство детектирования гамма-излучения сцинтилляционное цифровое УДС-ГЦ-63x63-485-АС	1	См.
	Емкость (ИЕ) ДЦКИ. 306128.002	1	примеча-
	Реле потока	1	ние
	Платформа ДЦКИ.301224.026	1	
	Набор защитных блоков ДЦКИ. 412131.020	1	
	Анализатор спектрометрический СТМА-01 ДЦКИ.412131.023	1	
ЛКВШ 06.362.0000.00 ТУ	Модификация МЖГ-040-01		
	Устройство спектрометрическое технологическое СТУ-040-01 ДЦКИ.412131.020-01, в составе:	1	
	Устройство детектирования гамма-излучения сцинтилляционное цифровое УДС-ГЦ-63x160-485-АС	1	См.
	Емкость (ИЕ) ДЦКИ. 306128.002-01	1	примеча-
	Реле потока	1	ние
	Платформа ДЦКИ.301224.026	1	
	Набор защитных блоков ДЦКИ. 412131.020	1	
	Анализатор спектрометрический СТМА-01 ДЦКИ.412131.023	1	
ЛКВШ 10.359.0000.00 01	Программное обеспечение	к-т	
	Комплект эксплуатационных документов согласно ведомости ЛКВШ 06.362.0000.00 ВЭ	1	
	(включая Методику поверки ЛКВШ 06.362.0000.00 Д3)		
ЛКВШ 06.362.0000.00 ВЭ	Ведомость эксплуатационных документов	1	

Примечание – Технические средства радиометра-спектрометра поставляются в упаковке и таре предприятия-изготовителя с комплектом монтажных частей и комплектом ЗИП-О.

Поверка

осуществляется по документу ЛКВШ 06.362.0000.00 ДЗ «Радиометр-спектрометр для контроля объёмной активности жидких сред МЖГ-040. Методика поверки», утвержденному ГЦИ СИ ФГУП «ВНИИМ им. Д.И.Менделеева» в ноябре 2013 г.

При поверке применяются источники фотонного излучения радионуклидные спектрометрические закрытые типа ОСГИ-Р, № г/р 40714-09 с активностью от 10^4 до 10^5 Бк и погрешностью не более $\pm 3\%$.

Сведения о методиках (методах) измерений

ЛКВШ 06.362.0000.00 РЭ «Радиометр-спектрометр для контроля объёмной активности жидких сред МЖГ-040. Руководство по эксплуатации».

Нормативные и технические документы, устанавливающие требования к радиометрам-спектрометрам МЖГ-040

- 1. ГОСТ 4.59-79 «Система показателей качества продукции. Средства измерений ионизирующих излучений. Номенклатура показателей».
- 2. ГОСТ 27451-87 «Средства измерений ионизирующих излучений. Общие технические условия».
- 3. ГОСТ 26874-86 «Спектрометры энергий ионизирующих излучений. Методы измерения основных параметров».
- 4. ГОСТ 8.033-96 «ГСИ. Государственная поверочная схема для средств измерений активности радионуклидов, потока и плотности потока альфа-, бета-частиц и фотонов радионуклидных источников».
- 5. ЛКВШ 06.362.0000.00 «Радиометр-спектрометр для контроля объёмной активности жидких сред МЖГ-040. Технические условия».

Рекомендации по области применения в сфере государственного регулирования обеспечения единства измерений

- при осуществлении деятельности в области использования атомной энергии;
- при осуществлении производственного контроля за соблюдением установленных законодательством Российской Федерации требований промышленной безопасности к эксплуатации опасного производственного объекта.

Изготовитель

Федеральное государственное унитарное предприятие «НАУЧНО-ИССЛЕДОВАТЕЛЬСКИЙ ТЕХНОЛОГИЧЕСКИЙ ИНСТИТУТ имени А.П. Александрова» (ФГУП «НИТИ им. А.П. Александрова»),

Адрес: 188540, г. Сосновый Бор, Ленинградской обл.

Тел.: (813-69) 2-26-67, факс: (813-69) 2-36-72

Испытательный центр

ГЦИ СИ ФГУП «ВНИИМ им. Д.И. Менделеева»,

Адрес: Россия, 190005, г. Санкт-Петербург, Московский пр., д. 19.

Тел.: (812) 251-76-01;факс:(812) 713-01-14

Аттестат аккредитации ГЦИ СИ ФГУП «ВНИИМ им. Д.И. Менделеева» по проведению испытаний средств измерений в целях утверждения типа № 30001-10 от 20.12.2010 г.

Заместитель Руководителя Федерального агентства по техническому регулированию и метрологии