ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Контроллеры управления вибрационным воздействием К-2

Назначение средства измерений

Контроллеры управления вибрационным воздействием K-2 (далее по тексту – контроллеры) предназначены для измерений напряжения переменного тока, соответствующего значениям параметров вибрации.

Описание средства измерений

Принцип действия контроллеров основан на усилении выходных электрических сигналов первичных измерительных преобразователей, установленных на испытуемых изделиях, преобразовании измерительных сигналов в цифровой код, дальнейшей обработке измерительной информации в компьютере и выдаче ее на внешние устройства в виде, удобном для пользователя, а также формировании и регулировании управляющих сигналов вибростенда.

Конструктивно контроллеры K-2 имеют модульное исполнение и содержат трехщелевой приборный блок K2ST-11-001 с установленным модулем ввода/вывода K2ST-21-001, PCI-адаптер интерфейса I/F K2ST-34-001, кабель интерфейса I/F и кабель сетевого питания. Дополнительно в приборный блок может устанавливаться восьмиканальный модуль ввода K2ST-23-001. Также имеется возможность соединения нескольких приборных блоков с общим количеством программно поддерживаемых входных каналов не более 64.

Конкретная конфигурация контроллера К2 (набор модулей расширения) выбирается потребителем исходя из общей измерительной задачи и параметров функционирования объекта контроля, необходимого числа контролируемых параметров и количества задействованных первичных измерительных преобразователей (ПИП).

Контроллеры выпускаются в двух модификациях: К-2 и К-2 Sprint.

Контроллеры K-2 Sprint выполнены в виде моноблока K2SP-11-001 и представляют собой двухканальную упрощенную версию контроллера K-2.

Контроллеры используются совместно с испытательными вибрационными установками для управления режимом испытаний на различные виды динамических нагрузок:

синусоидальную вибрацию с возможностью поиска резонансного интервала;

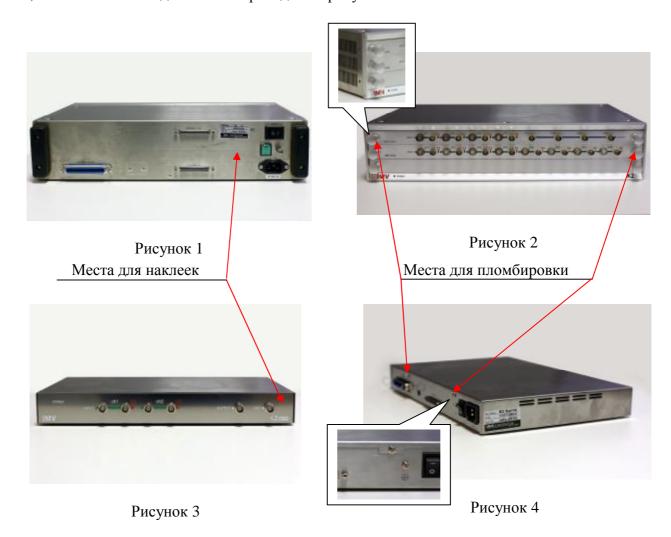
удар с возможностью синтеза спектра ударного отклика;

случайную широкополосную вибрацию (ШСВ);

наложение синусоидальных вибраций на ШСВ и наложение узкополосных случайных синусоидальных вибраций на ШСВ;

воспроизведение на вибрационных установках эксплуатационных временных историй ускорений, записанных в полевых условиях.

Управление заданием испытательных режимов производится на основе измерений амплитудных значений виброускорения, виброскорости и виброперемещения.


Внешний вид задней панели приборного блока K2ST-11-001 и место для наклейки знака утверждения типа приведены на рисунке 1.

Внешний вид передней панели приборного блока K2ST-11-001 с установленными модулями K2ST-21-001 и K2ST-23-001 и места для пломбировки от несанкционированного доступа приведены на рисунке 2. Пломбировка предусмотрена на болтах крепления модулей к приборному блоку.

Внешний вид передней панели приборного блока K2SP-11-001 и место для наклейки знака утверждения типа приведены на рисунке 3.

Внешний вид приборного блока K2SP-11-001 и места для пломбировки от несанкционированного доступа приведены на рисунке 4. Пломбировка предусмотрена на болтах крепления верхней панели к корпусу приборного блока.

Внешний вид платы PCI-адаптера интерфейса I/F K2ST-34-001, кабеля интерфейса I/F, USB-ключа и CD-диска с ПО приведен на рисунке 5.

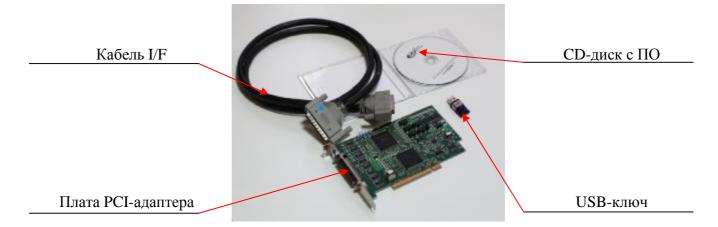


Рисунок 5

Программное обеспечение

Метрологически значимая часть ПО представляет собой исполняемые программные модули «SINE», «RANDOM», «SHOCK» и «CAPTURE», работающие под управлением операционной системы Windows 2000/XP.

Программные модули предназначены для формирования алгоритмов задания воздействий, измерений и расчета параметров вибрации, конфигурации оборудования контроллеров, хранения параметров конфигурации, контроля и диагностирования оборудования, защиты настроек оборудования от несанкционированного доступа, визуализации измерительной информации.

Идентификационные данные (признаки) метрологически значимой части ПО указаны в таблице 1.

Таблина 1

таолица т				
Наименование ПО	Идентифика-	Номер версии	Цифровой	Алгоритм
	ционное на-	(идентифика-	идентификатор ПО	вычисления
	именование	ционный но-	(контрольная сумма	идентификатора
	ПО	мер) ПО	исполняемого кода)	ПО
«SINE»	ImvDevVctrlA	4.4.1.0	99 A A 20E6	
	ppSine.exe	4.4.1.0	88AA20F6	
«RANDOM»	ImvDevVctrlA	4.4.1.0 DE025DE5		
	ppRandom.exe	4.4.1.0	BE935DE5	CRC32
«SHOCK»	ImvDevVctrlA	5.4.9.0	5.4.9.0 2F4400DA	CKC32
	ppShock.exe	J. 4 .9.0	21'4400DA	
«CAPTURE»	ImvDevVctrlA	4.3.0.0	65D23F7F	
	ppCapture.exe	4.3.0.0	03D23F7F	

Метрологически значимая часть ПО и измеренные данные достаточно защищены с помощью специальных средств защиты от преднамеренных и непреднамеренных изменений. Реализована защита ПО с помощью USB-ключа и пароля доступа к модулям конфигурации оборудования. Защита ПО от непреднамеренных и преднамеренных изменений соответствует уровню «С» по МИ 3286-2010.

Метрологические и технические характеристики

 Число входных измерительных каналов:

 K-2
 от 4 до 64;

 K-2 Sprint
 2.

 Разрядность АЦП
 24.

 Диапазон рабочих частот, Гц
 от 0,2 до 20000.

 Диапазон входных напряжений (амплитудных значений), В
 от минус 10 до 10.

 Число каналов управления:
 4;

 K-2
 4;

 K-2 Sprint
 1.

 Разрядность ЦАП
 24.

 Диапазон рабочих частот, Гц
 от 0,2 до 20000.

 Диапазон выходных напряжений (амплитудных значений), В
 от минус 10 до 10.

 Режим синусоидальной вибрации

Пределы допускаемой относительной погрешности установки частоты выходного

Всего листов 6		
Коэффициент нелинейных искажений выходного сигнала (при значении выходного		
сигнала 1 В СКЗ), %, не более		
Пределы допускаемой относительной погрешности измерений синусоидального		
напряжения, соответствующего значениям виброускорения, виброскорости и		
виброперемещения, %:		
в диапазоне от 0,2 до 10000 Γ ц \pm 1,0;		
в диапазоне от 10000 до 20000 Γ ц \pm 3,0.		
Динамический диапазон автоматического регулирования, дБ, не менее114.		
Режим удара		
Формы удараполуволновой синусоидальный, гаверсинусоидальный,		
пилообразный, треугольный, трапецеидальный, комбинированный.		
Динамический диапазон автоматического регулирования, дБ, не менее84.		
Режим случайной широкополосной вибрации		
Динамический диапазон автоматического регулирования, дБ, не менее94.		
Общие характеристики		
Габаритные размеры, мм, не более:		
приборного блока K2ST-11-001 (длина х ширина х высота)		
приборного блока K2SP-11-001 (длина х ширина х высота)		
платы K2ST-34-001 (длина х ширина)		
Масса, кг, не более:		
приборного блока K2ST-11-001 (с модулями расширения)		
приборного блока K2SP-11-0012;		
платы K2ST-34-001 с кабелем		
Время непрерывной работы, ч, не менее		
Параметры электропитания:		
напряжение переменного тока, В от 100 до 240;		
частота переменного тока, Гц от 49 до 51.		
Потребляемая мощность, В.А, не более:		
приборного блока K2ST-11-001 (с модулями расширения)		
приборного блока K2SP-11-001		
Рабочие условия эксплуатации:		
температура окружающего воздуха, °С от 10 до 30;		
относительная влажность воздуха (при температуре 20 °C), %, не более		
атмосферное давление, кПа		
- T-T		

Знак утверждения типа

Знак утверждения типа средства измерений наносится на титульный лист Руководства по эксплуатации методом компьютерной графики, на заднюю панель приборного блока K2ST-11-001 или на переднюю панель приборного блока K2SP-11-001 в виде голографической наклейки.

Комплектность средства измерений

Комплект поставки перечислен в таблице 2.

Таблица 2

Наименование	Обозначение	Количество	Примечания
Приборный блок	K2ST-11-001	1	К2
Модуль ввода/вывода	K2ST-21-001	1	К2
Модуль ввода	K2ST-23-001	1*	К2
Приборный блок	K2SP-11-001	1	K2 Sprint
PCI-адаптер интерфейса I/F	K2ST-34-001	1	
Компакт-диск с комплектом ПО		1	
USB-ключ		1	
Кабель интерфейсный		1	
Кабель сетевой		1	
Руководство по эксплуатации на		1	
русском языке			
Методика поверки		1	
Формуляр		1	

^{*}Примечание: по требованию Заказчика

Поверка

осуществляется по документу МП-206/583-2013 «Контроллеры управления вибрационным воздействием К-2 фирмы «IMV Corporation», Япония. Методика поверки», утвержденному ГЦИ СИ ФГУП «ВНИИМ им. Д.И. Менделеева» в марте 2013 г. и входящему в комплект поставки.

Основные средства поверки:

- калибратор-вольтметр универсальный B1-28 (рег. № 10759-86): диапазон воспроизведения напряжения переменного тока от 1 мкВ до 700 В в диапазоне рабочих частот от 0,1 Γ ц до 100 к Γ ц, пределы допускаемой относительной погрешности воспроизведения напряжения переменного тока \pm 0,25 %;
- частотомер электронно-счетный Ч3-77 (рег. № 14739-95): диапазон рабочих частот от 0,01 Γ ц до 1,60 Γ Γ ц, пределы допускаемой относительной погрешности измерений частоты $\pm 10^{-8}/T_{\text{сч.}}$ где $T_{\text{сч.}}$ время счета;
- измеритель нелинейных искажений автоматический С6-11 (рег. № 9081-83) : диапазон рабочих частот от 20 Γ ц до 199,9 к Γ ц, диапазон измерений коэффициента нелинейных искажений от 0,03 до 30 %;
- осциллограф цифровой GDS-2102 (рег. № 33756-07): полоса пропускания 100 МГц, коэффициенты отклонения от 2 мВ/дел. до 5 В/дел., пределы допускаемой относительной погрешности установки коэффициентов отклонения \pm 3 %, коэффициенты развертки от 10 нс/дел. до10 с/дел., пределы допускаемой относительной погрешности установки коэффициентов развертки \pm 0,01 %.

Сведения о методиках (методах) измерений

Контроллеры управления вибрационным воздействием K-2/K-2 Sprint. Общая часть. Руководство по эксплуатации.

Программное обеспечение управления синусоидальным профилем. K-2/K-2 Sprint SINE. Руководство по эксплуатации.

Программное обеспечение управления ударным профилем. K-2/K-2 Sprint SHOCK. Руководство по эксплуатации.

Программное обеспечение задания профиля ШСВ (широкополосной случайной вибрации). K-2/K-2 Sprint RANDOM. Руководство по эксплуатации.

Программное обеспечение захвата аналогового волнового профиля. K-2/K-2 Sprint CAPTURE. Руководство по эксплуатации.

Нормативные и технические документы, устанавливающие требования к контроллерам управления вибрационным воздействием К-2

ГОСТ 22261-94. Средства измерений электрических и магнитных величин. Общие технические условия.

Техническая документация фирмы-изготовителя.

Рекомендации по областям применения в сфере государственного регулирования обеспечения единства измерений

Выполнение работ по оценке соответствия промышленной продукции и продукции других видов, а также иных объектов установленным законодательством Российской Федерации обязательным требованиям, в том числе для проведения испытаний изделий на вибрационные воздействия.

Изготовитель

Фирма «IMV Corporation», Япония 9F Koyo-building, 1-10-17 Hamamatsu-cho, Mihato-ku, Tokyo 105-0013 Japan. Телефон: 81-3-3436-3925

Заявитель

ЗАО Предприятие Остек

Юридический адрес: 121467 Россия, г. Москва, ул. Молдавская, д.5, стр. 2, Фактический адрес: 121467 Россия, г. Москва, ул. Молдавская, д.5, стр. 2.

Телефон: +7 495 788-44-44, факс: +7 495 788-44-42,

Электронная почта: info@ostec-group.ru,

Сайт: http://www. ostec-group.ru.

Испытательный центр

ГЦИ СИ ФГУП «ВНИИМ им. Д.И. Менделеева».

Юридический (почтовый) адрес: 190005, г. Санкт-Петербург, Московский пр., д. 19.

Телефон: (812) 251-76-01, факс: (812) 713-01-14

E-mail: info@vniim.ru

Аттестат аккредитации ГЦИ СИ ФГУП «ВНИИМ им. Д.И. Менделеева» по проведению испытаний средств измерений в целях утверждения типа № 30001-10 от $20.12.2010 \, \Gamma$.

Заместитель Руководителя Федерального агентства по техническому регулированию и метрологии

Φ.]	В.	Буј	ΙЫΓ	ΉΝ

М.п.	« »	2014 г