ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Комплексы измерительно-вычислительные для мониторинга работающих механизмов BN-Trendmaster DSM

Назначение средства измерений

Комплексы измерительно-вычислительные для мониторинга работающих механизмов BN-Trendmaster DSM (далее - ИВК) представляют собой электронное устройство, обеспечивающее измерение унифицированных сигналов от преобразователей виброускорения, виброскорости, радиального виброперемещения, осевого перемещения, температуры, токовых входов 4-20 мА, входов по напряжению, давления и скорости вращения.

Описание средства измерений

Принцип работы ИВК основан на осуществлении непрерывного приема, усилении и преобразовании аналоговой информации, поступающей от первичных преобразователей, расчете не измеряемых прямым путем параметров и сравнении измеренных и вычисленных параметров с программируемыми пользователем пороговыми значениями (уставками) и выдачу управляющего сигнала в систему АСУ ТП.

ИВК имеет модульную конструкцию и состоит из модуля связи и 4-х модулей ввода. Модули ввода делятся на модули прямого и последовательного ввода.

Каждый модуль прямого ввода состоит из 8 каналов и предназначен для непосредственного подключения различных датчиков с выходом по напряжению или с выходом 4-20 мА. Модули последовательного ввода (плата SPA) предназначены для подключения к модулям интерфейса датчиков (ТІМ, FlexiTIM и ProTIM фирмы Bently Nevada). Каждая плата ввода SPA позволяет использовать 2 линии SPA, и каждая линия SPA позволяет подключить до 128 модулей ProTIM и 256 датчиков (по 2 к каждому ProTiM).

При помощи программ конфигурирования каждый канал можно запрограммировать на выполнение конкретных функций.

В качестве средства конфигурирования и отображения информации используются персональные компьютеры различного исполнения.

Внешний вид ИВК показан на рисунке 1.

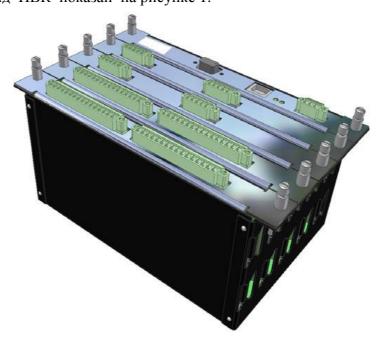


Рисунок 1.

Программное обеспечение

Комплексы измерительно-вычислительные для мониторинга работающих механизмов BN-Trendmaster DSM имеют встроенное программное обеспечение (ПО), предназначенное для обработки измерительной информации, индикации результатов измерений при подключении к персональному компьютеру или ноутбуку с установленным в нем ПО System 1, формирования параметров выходных сигналов, настройки и проведения диагностики.

Идентификационные данные ПО приведены в таблице 1.

Таблица 1.

Наименование ПО	Идентифика- ционное наименование ПО	Номер версии (идентифика- ционный номер) ПО	Цифровой идентификатор ПО (контрольная сумма исполняемого кода)	Алгоритм цифрового идентификатора ПО
Bently Nevada	Bently Nevada	не ниже		
Monitor	Monitor	3.0	-	MD5
Configuration	Configuration			
(встроенное)				
System 1	System 1	не ниже 6.1	-	-

Защита программы от преднамеренного воздействия обеспечивается тем, что пользователь не имеет возможности изменять команды программы, обеспечивающие управление работой системы и процессом измерений. Защита программы от непреднамеренных воздействий обеспечивается функциями резервного копирования. Программное обеспечение и настройки преобразователей защищены от несанкционированного доступа с помощью паролей.

Уровень защиты программного обеспечения от непреднамеренных и преднамеренных изменений «С» в соответствии с МИ 3286-2010.

Метрологические и технические характеристики

Таблица 2

Наименование характеристики	Значение характеристики			
1. Каналы прямого ввода.				
Диапазоны измерения:				
- виброускорения, M/c^2 ;	от 0 до 10000			
- виброскорости, мм/с;	от 0 до 10000			
- виброперемещения, мм;	от 0 до 10000			
- осевого перемещения, мм;	от 0 до 100			
- скорости вращения, об/мин.	от 0 до 100000			
Рабочий диапазон частот, Гц	от 1/3 до 24000			
Пределы допускаемой относительной погрешности измерения	±1			
параметров вибрации, осевого перемещения и скорости вращения, %				
Диапазон измерения входного постоянного тока, мА	от 4 до 20			
Пределы допускаемой относительной погрешности измерения тока, %	±2			
2. Каналы последовательного ввода SPA.				
Диапазоны измерения:				
- виброскорости, мм/с;	от 0 до 10000			
- виброперемещения, мм;	от 0 до 10000			
- осевого перемещения, мм;	от 0 до 100			
- скорости вращения, об/мин;	от 0 до 100000			
- давления, кПа.	от 0 до 10000			

от 1/3 до 24000
<u>±2</u>
от 4 до 20
±2
от минус 270 до 1372
от минус 200 до 850
12
<u>+2</u>
от 20 до 30
18
от минус 20 до 70
до 95
216×133×114
1,6

Примечание: метрологические и технические характеристики комплексов приведены без учета характеристик, преобразователей виброускорения, виброскорости, радиального виброперемещения, осевого перемещения, температуры, давления и скорости вращения.

Знак утверждения типа

Знак утверждения типа наносится на корпус ИВК методом наклейки и на руководство по эксплуатации типографским способом.

Комплектность средства измерений

 ИВК ВN-Trendmaster DSM
 1 шт.

 Руководство по эксплуатации
 1 экз.

 Методика поверки
 1 экз.

Поверка

осуществляется по документу МП 56550-14 «Комплексы измерительно-вычислительные для мониторинга работающих механизмов BN-Trendmaster DSM фирмы «Bently Nevada, Inc.», США. Методика поверки», утвержденному ФГУП «ВНИИМС» в январе 2014 г.

Основные средства поверки: генератор сигналов сложной формы со сверхнизким уровнем искажений DS 360 (г/р № 45344-10); мультиметр цифровой Agilent 34411A (г/р № 33921-07), источник постоянного тока Б5-76 (г/р № 32678-06), магазин сопротивления Р4831 (г/р № 6332-77).

Сведения о методиках (методах) измерений

приведены в документе «Комплексы измерительно-вычислительные для мониторинга работающих механизмов BN-Trendmaster DSM фирмы «Bently Nevada, Inc.», США. Руководство по эксплуатации».

Нормативные и технические документы, устанавливающие требования к комплексам измерительно-вычислительным для мониторинга работающих механизмов BN-Trendmaster DSM

1. Техническая документация фирмы «Bently Nevada, Inc.», США.

Рекомендации по областям применения в сфере государственного регулирования обеспечения единства измерений

Осуществление производственного контроля за соблюдением установленных законодательством Российской Федерации требований промышленной безопасности к эксплуатации опасного производственного объекта.

Изготовитель

Фирма «Bently Nevada, Inc.», США

Адрес: 1631 Bently Parkway South Minden, Nevada 89423, США

Тел.: +1 775 782 3611 Факс: +1 775 215 2876

Web: www.ge-mcs.com/bently-nevada

Заявитель

Общество с ограниченной ответственностью «ДжиИ Рус» (ООО «ДжиИ Рус»), г. Москва

Адрес: 123317 г. Москва, Краснопресненская наб., 18 Тел.: +7 (495) 937 11 11; Факс: +7 (495) 937 11 12

Испытательный центр

Федеральное государственное унитарное предприятие «Всероссийский научноисследовательский институт метрологической службы» (ФГУП «ВНИИМС»)

Адрес: 119361, г. Москва, ул. Озерная, д.46 Тел./факс: (495)437-55-77 / 437-56-66;

E-mail: office@vniims.ru, www.vniims.ru

Аттестат аккредитации Φ ГУП «ВНИИМС» по проведению испытаний средств измерений в целях утверждения типа № 30004-13 от 26.07.2013 г.

Заместитель Руководителя Федерального агентства по техническому регулированию и метрологии

Ф.В. Булыгин

М.п. «___» ____2014 г.