ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Анализаторы рентгеновские флуоресцентные волнодисперсионные «СПЕКТРОСКАН CLSW»

Назначение средства измерений

Анализаторы рентгеновские флуоресцентные волнодисперсионные «СПЕКТРОСКАН CLSW» предназначены для измерения массовой доли хлора и серы в жидких пробах нефти и нефтепродуктов и водных растворах в соответствии со стандартизованными методиками (методами).

Описание средства измерений

Принцип действия анализатора— волнодисперсионная рентгенофлуоресцентная спектрометрия. Анализируемую пробу помещают в кювету, облучают первичным излучением рентгеновской трубки и измеряют интенсивность вторичного флуоресцентного излучения от образца на длинах волн, соответствующих хлору и сере.

Конструктивно анализатор состоит из спектрометрического блока и блока вакуумного насоса. Спектрометрический блок включает в себя: рентгеновскую трубку, кристалланализатор, детектор (пропорциональный счетчик), устройство водяного охлаждения. Блок вакуумного насоса используется для вакуумирования спектрометрического тракта, однако образцы во время измерения находятся на воздухе.

Массовую долю хлора и серы рассчитывают по предварительно построенным градуировочным характеристикам, представляющим собой зависимости содержаний определяемых элементов от измеренных интенсивностей, в соответствии с методами (методиками) измерений.

Управление прибором, обработка и вывод информации осуществляется при помощи встроенного микропроцессорного устройства, либо с персонального компьютера, через интерфейс RS-232. Внешний вид анализатора показан на рисунке 1.

Рисунок 1 Внешний вид анализатора СПЕКТРОСКАН CLSW

Программное обеспечение

Анализаторы оснащены встроенным и автономным ПО, с помощью которого обеспечивается управление прибором, обработка, вывод и хранение результатов измерений.

Встроенное программное обеспечение размещенона плате микропроцессора в корпусе анализатора и является полностью метрологически значимым. Автономное ПО размещено на внешнем персональном компьютере. Идентификационные данные встроенного и автономного ПО приведены в Таблице 1.Метрологически значимые части автономного ПО и их идентификационные данные приведены в Таблице 2.

Таблица 1

Наименование программного обеспечения	Идентификационное наименование программного обеспечения	Номер версии программного обеспечения	Цифровой идентификатор программного обеспечения	Алгоритм вычисления цифрового идентификатора программного обеспечения
Встроенное ПО				
SPW-D3	SPW-D3	3.27 и выше	C941F6A5	crc32
Автономное ПО				
Спектр-Квант	Спектр-Квант	6.0	-	-

Таблица 2

Наименование компонента программного обеспечения	Идентификационное наименование программного обеспечения (имя файла компонента)	Номер версии (идентификацион- ный номер) компо- нента программно- го обеспечения	Цифровой идентификатор программного обеспечения (контрольная сумма)	Алгоритм вычисления цифрового идентификатора программного обеспечения
«Количествен- ный анализ»	qav4.exe	4.0.0.262 и выше	E6EE98B6	crc32
«Проверка спектрометра»	qavtest4.exe	4.0.0.299и выше	A7E9F760	crc32
«Измерение спектров»	scanner.exe	1.0.0.0 и выше	C8E286ED	crc32
«Просмотр спектров»	qualanal.exe	1.0.0.103и выше	93F57215	crc32

Встроенное ΠO и метрологически значимая часть автономного ΠO выполняют следующие функции:

- управление источником рентгеновского излучения;
- создание и хранение файлов методов измерений;
- регистрация данных с помощью детектирующей системы;
- управление процедурой измерений;
- создание отчетов по результатам измерений;
- хранение и экспорт полученных данных.

Уровень защиты ΠO от непреднамеренных и преднамеренных изменений соответствует уровню «С» по МИ 3286-2010. Влияние ΠO на метрологические характеристики учтено при их нормировании.

Метрологические и технические характеристики

Таблица 3

Наименование характеристики	Значение характеристики
1. Предел обнаружения хлора ¹ , мг/кг, не более	0,5
2.Относительное СКО выходного сигнала ¹ (по линии хлора), %, не более	2,0
3. Предел обнаружения серы ² , %, не более	0,0001
4.Относительное СКО выходного сигнала ² (по линии серы), %, не более	1,0
5. Напряжение питания от сети переменного тока частотой (50 \pm 1) Γ ц, B	220±22
6. Потребляемая мощность, B·A, не более	750
7. Габаритные размеры спектрометрического блока, мм, не более	530×480×340
8. Масса спектрометрического блока, кг, не более	40
9. Габаритные размеры блока вакуумного насоса, мм, не более	330×230×380
10. Масса блока вакуумного насоса, кг, не более	9
11. Средний срок службы, лет	8
12. Наработка до отказа, ч, не менее	15000
13. Условия эксплуатации:	
-температура окружающего воздуха, °С	от 10 до 30
-атмосферное давление, кПа	от 84 до 107
-относительная влажность воздуха при 25 °C, % не более	80

Знак утверждения типа

Знак утверждения типа наносится на заднюю панель анализатора в виде наклейки и на титульный лист руководства по эксплуатации методом компьютерной графики.

Комплектность средства измерений

Таблица 4

			Тионнци
Наименование	Обозначение	Количество	Примечание
Анализатор	PA15.000.000	1	
Устройство бесперебойного питания		1	Покупное
Комплект ЗИП		1	В соответствии с ведомостью ЗИП
Ведомость ЗИП	РА15.000.000 ЗИ	1	
Паспорт	РА15.000.000 ПС	1	
Руководство по эксплуатации	PA15.000.000PЭ	1	
Методика поверки	РА15.000.000.Д22	1	

Поверка

осуществляется по документу PA15.000.000.Д22. «Анализаторы рентгеновские флуоресцентные волнодисперсионные «СПЕКТРОСКАН CLSW». Методика поверки», утвержденному ГЦИ СИ ФГУП «ВНИИМ им.Д.И.Менделеева» 25.10.2013 г.

 $^{^{1}}$ Получены при использовании бинарного контрольного раствора (изооктан/хлорбензол; без внутреннего стандарта) с массовой долей хлора 50 мг/кг, приготовленного с использованием ГСО 7142-95 и изооктана

 $^{^2}$ Получены при использовании ГСО с массовой долей серы 0,06 %, ГСО 9406-2009 и изооктана

Основные средства поверки: стандартный образец состава хлорбензола ГСО 7142-95 (МСО 0039:1998), стандартный образец массовой доли серы в минеральном масле ГСО 9406-2009 (СН-0,060-НС).

Допускается применение других стандартных образцов, допущенных к применению в Российской Федерации в установленном порядке и обеспечивающих определение метрологических характеристик анализатора с требуемой точностью.

Сведения о методиках (методах) измерений

- Анализаторы рентгеновские флуоресцентные волнодисперсионные «СПЕКТРОСКАН CLSW». Руководство по эксплуатации.
- ГОСТ Р 52247-2004 (метод В) «Нефть. Методы определения хлорорганических соединений».
- ГОСТ Р 53203-2008. «Нефтепродукты. Определение серы методом рентгенофлуоресцентной спектрометрии с дисперсией по длине волны».
- ГОСТ Р 52660-2006. «Топлива автомобильные. Метод определения содержания серы рентгенофлуоресцентной спектрометрией с дисперсией по длине волны».

Нормативные и технические документы, устанавливающие требования к анализаторам рентгеновским флуоресцентным волнодисперсионным «СПЕКТРОСКАН CLSW»

Технические условия ТУ 4276-006-23124704-2013

Рекомендации по областям применения в сфере государственного регулирования обеспечения единства измерений

при выполнении работ по оценке соответствия промышленной продукции и продукции других видов, а также иных объектов установленным законодательством Российской Федерации обязательным требованиям.

Изготовитель

ООО «НПО «СПЕКТРОН», г. Санкт-Петербург.

Адрес: 190103, Санкт-Петербург, ул. Циолковского, д.10, лит.А

Тел: +7(812) 325-81-83, факс: +7(812) 325-85-03,e-mail: <u>info@spectron.ru</u>

Испытательный центр

ГЦИ СИ ФГУП "ВНИИМ им. Д.И.Менделеева".

Адрес:190005, Санкт-Петербург, Московский пр. 19,

Тел. (812) 251-76-01, факс: (812) 713-01-14,эл.почта: info@vniim.ru

Аттестат аккредитации ГЦИ СИ ФГУП «ВНИИМ им. Д.И. Менделеева» по проведению испытаний средств измерений в целях утверждения типа № 30001-10 от 20.12.2010 г.

Заместитель Руководителя Федерального агентства по техническому регулированию и метрологии

Ф.В. Булыгин

М.п.			
	«	»	2014 г