ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Система автоматизированная информационно-измерительная коммерческого учета электрической энергии ПС 110/10 кВ «Яндекс»

Назначение средства измерений

Система автоматизированная информационно-измерительная коммерческого учёта электрической энергии ПС 110/10 кВ «Яндекс» (далее – АИИС КУЭ), предназначена для измерения электрической энергии (мощности), потребляемой объектами ООО «Яндекс ДЦ», а также регистрации и хранения параметров электропотребления, формирования отчетных документов и информационного обмена с субъектами оптового рынка электроэнергии (ОРЭ) и другими внешними пользователями. Выходные данные системы могут быть использованы для коммерческих расчетов.

Описание средства измерений

АИИС КУЭ представляет собой многофункциональную, двухуровневую систему с централизованным управлением и распределенной функцией измерения.

АИИС КУЭ решает следующие задачи:

- измерение 30-минутных приращений активной электроэнергии,
- периодический (1 раз в сутки) и /или по запросу автоматический сбор привязанных к единому календарному времени результатов измерений приращений электроэнергии с заданной дискретностью учета (30 мин);
- хранение результатов измерений в специализированной базе данных, отвечающей требованию повышенной защищенности от потери информации (резервирование баз данных) и от несанкционированного доступа;
- передача в организации (внешние пользователи) результатов измерений;
- предоставление по запросу контрольного доступа к результатам измерений, данных о состоянии объектов и средств измерений со стороны сервера организаций (внешних пользователей);
- обеспечение защиты оборудования, программного обеспечения и данных от несанкционированного доступа на физическом и программном уровне (установка паролей и т.п.):
- диагностика функционирования технических и программных средств АИИС КУЭ;
- конфигурирование и настройка параметров АИИС КУЭ:
- ведение системы единого времени в АИИС КУЭ (коррекция времени). 1-й уровень – (ИИК) (2 точки измерения) содержит в своем составе:
- измерительные трансформаторы напряжения (ТН) по ГОСТ 1983-2001 типа СРТf-123, класса точности (КТ) 0,2;
- измерительные трансформаторы тока (TT) по ГОСТ 7746-2001 типа TAG-123 класса точности (КТ) 0,2S;
- вторичные измерительные цепи тока и напряжения;
- многофункциональные микропроцессорные счетчики типа A1802-RAL-P4-GB-DW-4, класса точности (КТ) 0,2S/0,5 ГОСТ Р 52323-2005 для активной энергии электроэнергии, ГОСТ Р 52425-2005 для реактивной энергии.
- 2-й уровень измерительно-вычислительный комплекс (ИВК), выполняющий функции измерительно-вычислительного комплекса электроустановки (ИВКЭ), содержит в своем составе:
- промышленный сервер;
- технические средства для организации локальной вычислительной сети разграничения прав доступа к информации;

- устройство синхронизации системного времени (УССВ) 16HVS, подключенное к серверу по интерфейсу RS232, выполненное на основе GPS приемника;
- устройство бесперебойного питания сервера (UPS);
- коммуникационное оборудование (GSM-модемы);
- ПО «АльфаЦЕНТР».

Первичные токи и напряжения трансформируются измерительными трансформаторами в аналоговые сигналы низкого уровня, которые по проводным линиям связи поступают на соответствующие входы электронного счетчика электрической энергии. В счетчике мгновенные значения аналоговых сигналов преобразуют в цифровой сигнал. По мгновенным значениям силы электрического тока и напряжения в микропроцессоре счетчика вычисляются мгновенные значения активной и полной мощности, которые усредняются за период 0,02 с. Средняя за период реактивная мощность вычисляется по средним за период значениям активной и полной мошности.

Электрическая энергия, как интеграл по времени от средней за период 0,02 с мощности, вычисляется для интервалов времени 30 мин.

Средняя активная (реактивная) электрическая мощность вычисляется как среднее значение мощности на интервале времени усреднения 30 мин.

Цифровой сигнал с выходов счетчиков поступает на сервер. Информация в сервере формируется в архивы и записывается на жесткий диск. Сервер подключается к коммуникатору сети Ethernet. На верхнем уровне системы выполняется обработка измерительной информации, в частности вычисление электроэнергии и мощности с учетом коэффициентов трансформации, формирование и хранение поступающей информации, оформление справочных и отчетных документов. Передача информации в организации—участники оптового рынка электроэнергии осуществляется в соответствии с согласованным сторонами регламентом.

АИИС КУЭ оснащена системой обеспечения единого времени (СОЕВ), созданной на основе устройства синхронизации времени УССВ 16HVS, установленного на уровне ИВК. Устройство синхронизации системного времени УССВ 16HVS включает в себя GPS — приемник, принимающий сигналы точного времени от спутников глобальной системы позиционирования 1 раз в час. Часы сервера АИИС КУЭ синхронизированы со временем GPS — приемника, корректировка часов севера АИИС КУЭ выполняется при расхождении часов сервера и GPS — приемника на ± 1 с. Сверка часов счетчиков АИИС КУЭ с часами сервера происходит при каждом опросе, при расхождении часов счетчиков с часами сервера на ± 1 с выполняется их корректировка. Погрешность часов компонентов системы не превышает ± 5 с.

В АИИС КУЭ предусмотрена многоуровневая защита от несанкционированного доступа: система паролей в ПО, пломбирование счетчиков и информационных цепей.

Программное обеспечение

В состав прикладного программного обеспечения (ПО) сервера АИИС КУЭ ПС 110/10 кВ «Яндекс» входит многопользовательский программный комплекс "АльфаЦЕНТР" с возможностью опроса до 10 счетчиков электрической энергии.

ПО «АльфаЦЕНТР» базируется на принципах клиент-серверной архитектуры и обеспечивает соблюдение принципов взаимодействия открытых систем. В качестве СУБД используется ORACLE Personal Edition 11. В ПО предусмотрено разграничение доступа к функциям для различных категорий пользователей, а также фиксации действий персонала в системном журнале.

Специальными средствами защиты метрологически значимой части ПО и измеренных данных от преднамеренных изменений являются:

-средства проверки целостности ПО (несанкционированная модификация метрологически значимой части ПО проверяется расчётом контрольной суммы для метрологически значимой части ПО и сравнением ее с действительным значением);

- -средства обнаружения и фиксации событий (журнал событий);
- -средства управления доступом (пароли).

Программное обеспечение после конфигурирования и настройки обеспечивают защиту от несанкционированного доступа и изменения его параметров.

Идентификационные данные программного обеспечения ПО «АльфаЦЕНТР», установленного на уровне ИВК АИИС КУЭ приведены в таблице 1.

Таблица 1

Наименование программного обеспечения	Наименование программного модуля (идентификацион ное наименование программного обеспечения)	Наименова- ние файла	Номер версии програм- много обеспечения	Цифровой идентификатор программного обеспечения (контрольная сумма исполняемого кода)	Алгоритм вычисления цифрового идентифи-катора программного обеспечения	
	Планировщик опроса и передачи данных	Amrserver.exe	3.33.0.0	da3edbbbf127fea4 10b4bbfefb42e5a9		
	драйвер ручного опроса счетчиков и УСПД	Amrc.exe	3.33.2.0	12c661c6a94d08d d3b459beb67a83e 01		
ПО	Драйвер автоматического опроса счетчиков и УСПД	Amra.exe	3.33.2.0	d1be2765fc9e968 4cb1d8ef2696defb 7	MD5	
"Альфа ЦЕНТР"	Драйвер работы с БД	Cdbora2.dll	3.32.0.0	407e72bfeaa9af40 f90dbb424b3bb33 5	MD5	
	Библиотека шифрования пароля счетчиков	encryptdll.dll	2.0.0.0	0939ce05295fbcb bba400eeae8d057 2c		
	библиотека сообщений планировщика опросов	alphamess.dll	Номер версии отсутствует	b8c331abb5e3444 4170eee9317d635 cd		

В соответствии с МИ 3286-2010 установлен уровень "С" защиты программного обеспечения от непреднамеренных и преднамеренных изменений.

Метрологические и технические характеристики

Состав измерительных каналов (ИК), значение характеристик погрешности АИИС КУЭ в рабочих условиях приведены в таблицах приведен в таблице № 2

Таблица 2.

	6 H	Состав измерительного канала				(%)	ζ,
Номер канала	Наименование	Трансформатор тока	Трансформатор напряжения	Счетчик	Вид эл. энергии	Основная погрешность, ± (Погрешность в рабочих условиях ±(%)
1	2	3	4	5	6	7	8
1	ОРУ-110 кВ, Т-1, 110 кВ	TAG-123 600/5;КТ 0,2 S A. Зав №30092907 B. Зав №30092908 C. Зав №30092906	CPTf-123; КТ 0,2; (110:√3)/(0,1√3) А.Зав №30092292 В.Зав №30092293 С.Зав №30092294	A1802-RAL- P4-GB-DW-4 KT 0,2S/0,5 3aв№01249627		0,5 1,3	1,2 1,9
2	ОРУ-110 кВ, Т-2, 110 кВ	ТАG-123 600/5;КТ 0,2 S А. Зав №30092911 В. Зав №30092909 С. Зав №30092910	СРТf-123; КТ 0,2; (110:√3)/(0,1√3) А.Зав №30092296 В.Зав №30092295 С.Зав №30092297	A1802-RAL- P4-GB-DW-4 КТ 0,2S/0,5 Зав№01249628	A P	0,5 1,3	1,2 1,9

Примечание к таблице 2:

- 1 Характеристики основной погрешности ИК даны для измерения электроэнергии и средней мощности (получасовая);
- 2 Нормальные условия:

параметры сети: напряжение (0,98 - 1,02) $U_{\text{ном}}$; ток (1 - 1,2) Іном, $\cos \varphi = 0,9$ инд; температура окружающей среды (20 \pm 5)°C.

- 3 Рабочие условия:
- параметры сети: напряжение (0.9 1.1) Uном; ток (0.01 1.2) Іном , $\cos \varphi = 0.8$ инд.;
- допускаемая температура окружающей среды для измерительных трансформаторов от минус 40 до плюс 70° C, для счетчиков от минус 40 до плюс 70°C; для сервера от плюс 10 до плюс 40°C;
- 4 Трансформаторы тока по ГОСТ 7746, трансформаторы напряжения по ГОСТ 1983, многофункциональные счетчики типа A1802-RAL-P4-GB-DW-4 активной и реактивной энергии класса точности (КТ) 0,2S/0,5 в соответствии с ГОСТ Р 52323-2005 при измерении активной электроэнергии, ГОСТ Р 52425-2005 при измерении реактивной электроэнергии; В виду отсутствия в указанном стандарте класса точности 0,5, пределы погрешностей при измерении реактивной энергии для данного типа счетчиков не превышают значений аналогичных погрешностей для счетчиков класса точности 0,5S для ГОСТ Р 52323-2005.
- 5 Погрешность в рабочих условиях указана для I = 0.02 Іном, $\cos \varphi = 0.8$ инд
- 6 Допускается замена компонентов в ИК на аналогичные, утвержденных типов с метрологическими характеристиками не хуже, чем у перечисленных в Таблице 2. Замена оформляется актом в установленном порядке.

Основные технические характеристики АИИС КУЭ приведены в таблице № 3.

Таблица №3

№ ИК	Наименование харан	Значение		
1, 2	Номинальный ток:	первичный (Ін ₁) вторичный (Ін ₂)	600 A 5 A	
	Диапазон тока: первичного (I_1) вторичного (I_2)		От 6 до 600 A От 0,05 до 5 A	
	Номинальное напряжение:	первичное (Uн ₁) вторичное (Uн ₂)	110/√3 κB 100/√3 B	
	Диапазон напряжения: первичное (U _{H1}) вторичное (U _{H2})		От 99 000/√3 до 121 000/√3 В От 90/√3 до 110/√3 В	
	Коэффициент мощности соз	От 0,5 до 1,0		
	Номинальная нагрузка ТТ	20 B·A		
	Допустимый диапазон нагру	От 5 до 20 В·А		
	Допустимое значение cos цепи нагрузки TT	От 0,8 до 1,0		
	Номинальная нагрузка ТН	50 B·A		
	Допустимый диапазон нагру	От 12,5 до 50 В·А		

Надежность применяемых в системе компонентов:

- электросчётчик среднее время наработки на отказ не менее $T_{cp}=120\ 000\ \text{ч}$, среднее время восстановления работоспособности не более $t_{\scriptscriptstyle B}=2\ \text{ч}$;
- Трансформатор тока среднее время наработки на отказ не менее $T_{cp} = 400~000$ ч, среднее время восстановления работоспособности не более $t_{\rm B} = 2$ ч;
- сервер среднее время наработки на отказ не менее $T_{cp}=15843$ ч, среднее время восстановления работоспособности не более $t_{\scriptscriptstyle B}=2$ ч;

Надежность системных решений:

- резервирование питания с помощью устройства АВР;
- резервирование каналов связи: информация о результатах измерений может передаваться в организации участники оптового рынка электроэнергии с помощью электронной почты и сотовой связи;

Регистрация событий:

- в журнале счётчика:
- параметрирование;
- пропадания напряжения;
- коррекция времени;
- журнал ИВК:
- параметрирование;
- попытка не санкционируемого доступа;
- коррекция времени;

Защищённость применяемых компонентов:

- механическая защита от несанкционированного доступа и пломбирование:
- электросчётчика;
- промежуточных клеммников вторичных цепей напряжения;
- испытательной коробки;
- сервера.
- защита на программном уровне информации при хранении, передаче, параметрировании:
- результатов измерений (при передаче, возможность использования цифровой подписи)
- установка пароля на счётчик;
- установка пароля на сервер;

Возможность коррекции времени в:

- электросчетчиках (функция автоматизирована);
- ИВК (функция автоматизирована).

Возможность сбора информации:

- о состоянии средств измерений (функция автоматизирована);
- о результатах измерений (функция автоматизирована).

Цикличность:

- измерений 30 мин (функция автоматизирована);
- сбора 30 мин (функция автоматизирована).

Глубина хранения информации:

- электросчетчик - тридцатиминутный профиль нагрузки в двух направлениях не менее 2730 часов.

Сервер баз данных обеспечивает хранение результатов измерений, состояний средств измерений на срок не менее 3,5 лет.

Знак утверждения типа

Знак утверждения типа наносится на титульные листы эксплуатационной документации АИИС КУЭ типографским способом.

Комплектность средства измерения

Комплектность АИИС КУЭ определяется проектной документацией на создание АИИС КУЭ, а также эксплуатационной документацией – формуляром (ФО 4222-03-7705939064 -2014).

Поверка

осуществляется в соответствии с документом МП 4222-03-7705939064-2014 «Система автоматизированная информационно-измерительная коммерческого учета электрической энергии ПС 110/10 кВ «Яндекс». Методика поверки», утвержденным ФБУ «Самарский ЦСМ» 16 января 2014 г.

Основные средства поверки - по НД на измерительные компоненты:

- трансформаторы тока по ГОСТ 8.217-2003;
- трансформаторы напряжения по ГОСТ 8.216-88;
- счетчики электрической энергии многофункциональные A1802-RAL-P4-GB-DW-4 в соответствии с методикой поверки ДЯИМ.411152.018.;
- приемник сигналов точного времени МИР РЧ-01;
- средства поверки УССВ- 16HVS в соответствии с методикой поверки ДЯИМ.466453.005.МП;
- средства измерений вторичной нагрузки TT в соответствии с утвержденным документом «Методика выполнения измерений мощности нагрузки трансформаторов тока в условиях эксплуатации»;
- средства измерений вторичной нагрузки ТН в соответствии с утвержденным документом «Методика выполнения измерений мощности нагрузки трансформаторов напряжения в условиях эксплуатации»;
- средства измерений падения напряжения в линии соединении счетчика с ТН в соответствии с утвержденным документом «Методика выполнения измерений падения напряжения в линии соединения с трансформатором напряжения в условиях эксплуатации».

Сведения о методиках (методах) измерений

Методы измерений, которые используются в системе автоматизированной информационно-измерительной коммерческого учёта электрической энергии ПС 110/10 кВ «Яндекс» приведены в документе - «Методика (метод) измерений электрической энергии с использованием системы автоматизированной информационно-измерительной коммерческого учёта электрической энергии ПС 110/10 кВ «Яндекс» - МВИ 4222-03-7705939064 -2014.

Методика (метод) аттестована ФБУ «Самарский ЦСМ» по ГОСТ Р 8.563-2009. Свидетельство об аттестации №76/01.00181-2013/2013 от 16 января.2014 г.

Нормативные документы, устанавливающие требования к системе автоматизированной информационно-измерительной коммерческого учёта электрической энергии ПС 110/10 кВ «Яндекс»:

- 1) ГОСТ 22261-94 Средства измерений электрических и магнитных величин. Общие технические условия;
- 2) ГОСТ Р 8.596-2002 ГСИ. Метрологическое обеспечение измерительных систем. Основные положения;
- 3) ГОСТ 7746-2001. Трансформаторы тока. Общие технические условия;
- 4) ГОСТ Р 52323-2005. (МЭК 62053-22:2003) "Аппаратура для измерений электрической энергии переменного тока. Частые требования. Часть 22. Статистические счетчики активной энергии классов точности 0,2S и 0,5S";
- 5) ГОСТ Р 52425-2005. (МЭК 62053-23:2003) "Аппаратура для измерения электрической энергии переменного тока. Частные требования. Часть 23. Статические счетчики реактивной энергии".

Рекомендации по областям применения в сфере государственного регулирования обеспечения единства измерений

Осуществление торговли и товарообменных операций.

Изготовитель

Общество с ограниченной ответственностью «Электроконтроль» Юридический адрес: 115114, г. Москва, ул. Кожевническая, д.8, стр. 2. Почтовый адрес: 117449, Москва, ул. Карьер, д. 2, стр. 9, офис 12

Тел/факс: 8(495) 6478818

E-mail: info.elkontrol@gmail.com

Испытательный центр

ФБУ «Государственный региональный центр стандартизации, метрологии и испытаний в Самарской области» ФБУ «Самарский ЦСМ»

Почтовый адрес: 443013 г. Самара, пр. Карла Маркса, 134,

Тел/факс: (846) 336 - 08 - 27, (846) 336 - 15 - 54;

E-mail: referent@samaragost.ru

Аттестат аккредитации ФБУ «Самарский ЦСМ» по проведению испытаний средств измерений в целях утверждения типа № 30017-13 от 21.10.2013 г.

Заместитель Руководителя Федерального агентства по техническому регулированию и метрологии	-	Ф.В. Булыги		
	М.п.	"	"	2014 г.