ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Система измерений количества и параметров нефти сырой № 2054 Архангельского месторождения при ГЗНУ-4304 НГДУ «Ямашнефть»

Назначение средства измерений

Система измерений количества и параметров нефти сырой № 2054 Архангельского месторождения при ГЗНУ-4304 НГДУ «Ямашнефть» (далее – система) предназначена для автоматизированного измерения массы нефти, поступающей с месторождений (лицензионных участков) НГДУ «Ямашнефть».

Описание средства измерений

Принцип действия системы основан на использовании прямого метода динамических измерений массы нефти с применением преобразователей массового расхода. Выходные электрические сигналы с преобразователей массового расхода поступают на соответствующие входы измерительно-вычислительного комплекса, который преобразует их и вычисляет массу сырой нефти по реализованному в нем алгоритму.

Система представляет собой единичный экземпляр измерительной системы целевого назначения, спроектированной для конкретного объекта и состоящей из следующих основных частей:

- блок технологический;
- блок-бокс с инженерными системами;
- система сбора, обработки информации и управления;
- система распределения электроэнергии;
- комплект запасных частей, инструмента и принадлежностей.

Монтаж и наладка системы осуществлены непосредственно на объекте эксплуатации в соответствии с проектной и эксплуатационной документацией на систему и ее компоненты.

Система состоит из двух (один рабочий и один контрольно-резервный) измерительных каналов массы сырой нефти, а также измерительных каналов температуры, давления, разности давления, объёмной доли воды в сырой нефти, в которые входят следующие средства измерений (далее – СИ):

- счетчики-расходомеры массовые Micro Motion модели CMF300 (далее CPM), Госреестр № 34070-07;
 - влагомеры поточные модели F (далее BH), Госреестр № 46359-11;
 - датчик температуры 644, Госреестр № 14683-09;
 - датчики избыточного давления модели Метран-150, Госреестр № 32854-08;
 - датчики разности давления модели Метран-150, Госреестр № 32854-08.

В систему обработки информации системы входят:

- шкаф обработки информации;
- автоматизированное рабочее место системы;
- шкаф силового управления.

В качестве оборудования сбора и обработки сигналов от первичных средств измерений системы используются два измерительно-вычислительных контроллера OMNI 6000 Госреестр N 15772-11, находящихся взаимно в горячем резерве.

В состав системы входят показывающие СИ:

- манометры для точных измерений типа МТИ-1216, Госреестр № 1844-63;
- манометры показывающие технические МПЗ, Госреестр № 10135-88;
- термометры ртутные стеклянные лабораторные ТЛ-4 №2, Госреестр № 303-91.

Система обеспечивает выполнение следующих основных функций:

- автоматизированное измерение массы сырой нефти по каждой измерительной линии и по системе в целом за установленные интервалы времени;
 - автоматизированное измерение технологических параметров;
 - автоматизированное измерение влагосодержания нефти;
 - отбор объединенной и точечной пробы в соответствии с ГОСТ 2517-2012;
 - отображение (индикацию), регистрацию и архивацию результатов измерений;
- регулирование температуры в блок-боксе системы (включение/отключение обогревателей) в заданном интервале температур;
- поверку рабочих и эталонных СИ на месте эксплуатации без нарушения процесса измерений;
- контроль метрологических характеристик СИ на месте эксплуатации без нарушения процесса измерений;
 - передачу данных на верхний уровень.

Все средства измерений, входящие в систему опломбированы в соответствии с технической документацией.

Программное обеспечение

Программное обеспечение (далее – ПО) системы (контроллеры измерительновычислительные ОМNІ 6000, автоматизированное рабочее место (далее – АРМ) оператора «RATE APM-оператора РУУН 2.3-11 AB») обеспечивает реализацию функций системы. ПО системы разделено на метрологически значимую и метрологически не значимую части. Первая хранит все процедуры, функции и подпрограммы, осуществляющие регистрацию, обработку, хранение, отображение и передачу результатов измерений параметров технологического процесса, а также защиту и идентификацию ПО системы. Вторая хранит все библиотеки, процедуры и подпрограммы взаимодействия с операционной системой и периферийными устройствами (не связанные с измерениями параметров технологического процесса). Наименования ПО и идентификационные данные указаны в таблице 1.

T a 6	5лица 1	 Идентификационные данные 	ПС)
-------	---------	--	----	---

Идентификационное наименование ПО	Номер версии (идентификацион- ный номер) ПО	Цифровой идентификатор ПО (контрольная сумма исполняемого кода)	Другие идентифи- кационные данные (если имеются)	Алгоритм вычис- ления цифрового идентификатора ПО
Контроллер измери- тельно- вычислительный ОМNI 6000	24.75.04	9111	-	CRC16
«RATE APM- оператора» РУУН 2.3-11 AB	2.3.1.1	B6D270DB	-	CRC32

Защита ПО системы от непреднамеренных и преднамеренных изменений и обеспечение его соответствия утвержденному типу, осуществляется путем: разделения, идентификации, защиты от несанкционированного доступа.

Идентификация ПО системы осуществляется путем отображения на мониторе операторской станций управления структуры идентификационных данных. Часть этой структуры, относящаяся к идентификации метрологически значимой части ПО системы, представляет собой хэш-сумму (контрольную сумму) по значимым частям.

ПО системы защищено от несанкционированного доступа, изменения алгоритмов и установленных параметров, путем ввода логина и пароля, ведения журнала событий, доступного

только для чтения. Доступ к метрологически значимой части ПО системы для пользователя закрыт. При изменении установленных параметров (исходных данных) в ПО системы обеспечивается подтверждение изменений, проверка изменений на соответствие требованиям реализованных алгоритмов, при этом сообщения о событиях (изменениях) записывается в журнал событий, доступный только для чтения. Данные, содержащие результаты измерений, защищены от любых искажений путем кодирования. Уровень защиты ПО системы от непреднамеренных и преднамеренных изменений соответствует уровню защиты «С».

Метрологические и технические характеристики

Основные метрологические и технические характеристики системы приведены в таблице 2. Т а б л и ц а 2 – Основные метрологические и технические характеристики системы

Наиманорания узрактаристики	Значение характери-	
Наименование характеристики	стики	
Измеряемая среда	Нефть сырая	
Диапазон измерений расхода, т/ч (м ³ /ч)	От 3,5 (3,6) до 50	
	(53,2)	
Диапазон плотности измеряемой среды, кг/м ³	От 940 до 980	
Диапазон кинематической вязкости, мм ² /с (сСт)	От 125 до 500	
Давление, МПа:		
– минимально допустимое	0,59	
– минимально допустимое в режиме контроля метрологических харак-		
теристик (далее -КМХ)	0,69	
– максимально допустимое (расчетное)	2,0	
Диапазон температуры, °С	От плюс 1 до плюс	
	30	
Суммарные потери давления в системе при максимальном расходе и		
максимальной вязкости, МПа, не более:		
– при измерениях;	0,2	
– при поверке и КМХ;	0,4	
Массовая доля воды, %	От 1 до 100	
Массовая концентрация хлористых солей, мг/дм ³ , не более	125000	
Массовая доля механических примесей, %, не более	0,1	
Массовая доля парафина, %, не более	От 2,4 до 3,3	
Содержание свободного газа	Не допускается	
Пределы допускаемой относительной погрешности при измерении массы сырой нефти, %	± 0,25	

Окончание таблицы 2

Наименование характеристики		Значение характери-	
		стики	
Пределы допускаемой относительной погрешности при измерении	мас-		
сы нетто сырой нефти, %:	U		
- при применении поточного влагомера и определении массовых д			
механических примесей и хлористых солей в испытательной лабо	рато-		
рии в обезвоженной нефти:	~ 0.	4.70	
- при содержании объемной доли воды в сырой нефти от 0,1 % до		± 1,5 %	
- при содержании объемной доли воды в сырой нефти от 5 % до 10		± 1,5 %	
- при содержании объемной доли воды в сырой нефти от 10 % до 2		± 1,5 %	
- при содержании объемной доли воды в сырой нефти от 20 % до 3		± 3,5 %	
- при содержании объемной доли воды в сырой нефти от 50 % до 7		± 5,0 %	
- при содержании объемной доли воды в сырой нефти от 70 % до 85 %;		± 13,5 %	
- при содержании объемной доли воды в сырой нефти от 85 % до 91 %;		± 22,5 %	
- при содержании объемной доли воды в сырой нефти от 91 % до 96 %;		\pm 49,5 %	
- при содержании объемной доли воды в сырой нефти свыше 96 %;		Не нормируются	
- при определении в испытательной лаборатории массовой доли воды в			
сырой нефти, массовых долей механических примесей и хлористы	х со-		
лей в обезвоженной нефти:			
- при содержании объемной доли воды в сырой нефти от 0,1 % до	5 %;	± 1,5 %	
- при содержании объемной доли воды в сырой нефти от 5 % до 10 %;		\pm 2,0 %	
- при содержании объемной доли воды в сырой нефти от 10 % до 20 %;		\pm 2,0 %	
- при содержании объемной доли воды в сырой нефти от 20 % до 50 %;		± 5,0 %	
- при содержании объемной доли воды в сырой нефти от 50 % до 70 %;		\pm 11,0 %	
- при содержании объемной доли воды в сырой нефти от 70 % до 85 %;		\pm 26,0 %	
- при содержании объемной доли воды в сырой нефти от 85 % до 91 %;		\pm 46,0 %	
- при содержании объемной доли воды в сырой нефти свыше 91 %;		Не нормируются	
Режим работы системы		Периодический	
Параметры электропитания:			
		30, трехфазное, 50 Гц	
		20, однофазное, 50 Гц	
Климатические условия эксплуатации системы:			
– температура окружающего воздуха, °С		от минус 40 до плюс 38	
– температура воздуха в помещениях, где установлено оборудование системы, °C		от плюс 5 до плюс 36	
относительная влажность воздуха в помещениях, где установ-			
лено оборудование системы, %		От 30 до 75	
– относительная влажность окружающего воздуха, %		От 56 до 78	
– атмосферное давление, кПа		От 84 до 106,7	

Знак утверждения типа

наносится справа в нижней части титульного листа инструкции по эксплуатации системы типографским способом.

Комплектность средства измерений

- —Система измерений количества и параметров нефти сырой № 2054 Архангельского месторождения при ГЗНУ-4304 НГДУ «Ямашнефть», 1 шт., заводской № 570;
- Инструкция по эксплуатации системы измерений количества и параметров нефти сырой № 2054 Архангельского месторождения при ГЗНУ-4304 НГДУ «Ямашнефть»;

— «Инструкция. ГСИ. Система измерений количества и параметров нефти сырой № 2054 Архангельского месторождения при ГЗНУ-4304 НГДУ «Ямашнефть». Методика поверки. МП 0105-9-2013», утвержденной ФГУП «ВНИИР» 27 ноября 2013 г.

Поверка

осуществляется по документу МП 0105-9-2013 «Инструкция. ГСИ. Система измерений количества и параметров нефти сырой № 2054 Архангельского месторожденияпри ГЗНУ-4304 НГДУ «Ямашнефть». Методика поверки», утвержденному ФГУП «ВНИИР» 29 ноября 2013 г.

Основные средства поверки:

- передвижная поверочная установка с диапазоном измерений расхода, обеспечивающим возможность проведения поверки CPM в их рабочем диапазоне измерений, с пределами допускаемой относительной погрешности не более ± 0.11 %;
- калибратор температуры модели ATC 156 B, диапазон воспроизводимых температур от минус 20 °C до 155 °C, пределы допускаемой абсолютной погрешности \pm 0,04 °C;
- калибратор многофункциональный модели ASC 300-R: внешний модуль давления нижний предел воспроизведения давления 0 бар, верхний предел воспроизведения давления 1,03424 бар (15 psi), пределы допускаемой основной погрешности \pm 0,025 % от верхнего предела измерений; внешний модуль давления нижний предел воспроизведения давления 0 бар, верхний предел воспроизведения давления 206 бар, пределы допускаемой основной погрешности \pm 0,025 % от верхнего предела измерений;
- Государственный первичный специальный эталон единицы объемного влагосодержания нефти и нефтепродуктов ГЭТ 87-2011, в составе средств измерений и вспомогательных устройств, определяемом паспортом эталона;
- устройство для поверки вторичной измерительной аппаратуры узлов учета нефти и нефтепродуктов УПВА, пределы допускаемой абсолютной погрешности воспроизведений силы постоянного тока \pm 3 мкА в диапазоне от 0,5 до 20 мА, пределы допускаемой относительной погрешности воспроизведений частоты и периода следования импульсов \pm 5×10⁻⁴ в диапазоне от 0,1 до 15000 Гц, пределы допускаемой абсолютной погрешности воспроизведений количества импульсов в пачке \pm 2 имп. в диапазоне от 20 до 5×10⁸ имп.

Сведения о методиках (методах) измерений

Методика измерений приведена в инструкции «ГСИ. Масса нефти сырой. Методика измерений с применением системы измерений количества и параметров нефти сырой № 2054 Архангельского месторождения при ГЗНУ-4304 НГДУ «Ямашнефть» (свидетельство об аттестации № 01.00257-2008/175014-13 от 17 сентября 2013 г., номер в федеральном информационном фонде по обеспечению единства измерений ФР.1.29.2013.16239).

Нормативные и технические документы, устанавливающие требования к системе измерений количества и параметров нефти сырой № 2054 Архангельского месторождения при ГЗНУ-4304 НГДУ «Ямашнефть»

- 1. Γ ОСТ Р 8.615-2005« Γ СИ. Измерения количества извлекаемой из недр нефти и нефтяного газа. Общие метрологические и технические требования».
- 2. Инструкция по эксплуатации системы измерений количества и параметров нефти сырой № 2054 Архангельского месторождения при ГЗНУ-4304 НГДУ «Ямашнефть».

Рекомендации по областям применения в сфере государственного регулирования обеспечения единства измерений — осуществление торговли и товарообменных операций.

Изготовитель

Общество с ограниченной ответственностью «ИМС Индастриз» (ООО «ИМС Индастриз»)

Юридический адрес:105187, г. Москва, ул. Щербаковская, д. 53, корп. 15

Почтовый адрес: 117312, г. Москва, ул. Вавилова, д. 47А

Испытательный центр

Федеральное государственное унитарное предприятие «Всероссийский научноисследовательский институт расходометрии» (ФГУП «ВНИИР»).

Юридический адрес: Россия, Республика Татарстан, 420088, г. Казань, ул. 2-я Азинская, 7а.

Тел. +7 (843) 272-70-62, факс: +7 (843) 272-00-32, e-mail: office@vniir.org.

Аттестат аккредитации ГЦИ СИ ФГУП «ВНИИР» по проведению испытаний средств измерений в целях утверждения типа № 30006-09 от $16.12.2009 \, \Gamma$.

Заместитель Руководителя				
Федерального агентства				Ф.В. Булыгин
по техническому регулированию				
и метрологии	М.п.	«	»	2014 г.