ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Система автоматизированная информационно - измерительная коммерческого учета электроэнергии (АИИС КУЭ) ЗАО «Энергомаш (Екатеринбург) - Уралэлектротяжмаш»

Назначение средства измерений

Система автоматизированная информационно — измерительная коммерческого учета электроэнергии (АИИС КУЭ) ЗАО «Энергомаш (Екатеринбург) - Уралэлектротяжмаш» (далее - АИИС КУЭ) предназначена для измерения активной и реактивной энергии, а также для автоматизированного сбора, обработки, хранения, отображения и передачи информации.

Описание средства измерений

АИИС КУЭ представляет собой многофункциональную двухуровневую автоматизированную систему с централизованным управлением и распределённой функцией измерения.

АИИС КУЭ включает в себя следующие уровни:

1-й уровень состоит из измерительных трансформаторов тока (далее - TT) класса точности 0,5 по ГОСТ 7746 - 2001, измерительных трансформаторов напряжения (далее - TH) класса точности 0,5 по ГОСТ 1983 - 2001, счетчиков активной и реактивной электроэнергии типа СЭТ-4ТМ.03М класса 0,5S по ГОСТ Р 52323-05 в части активной электроэнергии и 1,0 по ГОСТ Р 52425-05 в части реактивной электроэнергии, вторичных измерительных цепей и технических средств приема-передачи данных.

Счетчики электрической энергии обеспечены энергонезависимой памятью для хранения профиля нагрузки с получасовым интервалом на глубину не менее 35 суток, данных по активной и реактивной электроэнергии с нарастающим итогом за прошедший месяц, а так же запрограммированных параметров.

- 2-й уровень информационно вычислительный комплекс (далее ИВК), обеспечивающий выполнение следующих функций:
 - сбор информации от счетчиков АИИС КУЭ (результаты измерений, журнал событий);
 - обработку данных и их архивирование;
- хранение информации в базе данных сервера ЗАО «Энергомаш (Екатеринбург) Уралэлектротяжмаш»;
- доступ к информации и ее передачу в организации участники оптового рынка электроэнергии (далее ОРЭ) и другие заинтересованные организации.

ИВК состоит из серверов сбора и базы данных, устройства синхронизации времени, автоматизированных рабочих мест (далее - APM) персонала и программного обеспечения (далее - ПО) «Энергосфера».

Измерительные каналы (далее – ИК) АИИС КУЭ включает в себя 1-й и 2-й уровни АИИС КУЭ.

Первичные фазные токи и напряжения преобразуются измерительными трансформаторами в аналоговые сигналы низкого уровня, которые по проводным линиям связи поступают на соответствующие входы электронного счетчика электрической энергии. Измерительная часть счетчиков выполнена на основе многоканального, шестнадцатиразрядного аналого-цифрового преобразователя (АЦП). АЦП осуществляет выборки мгновенных значений величин напряжения и тока по шести каналам измерения, преобразование их в цифровой код и передачу по скоростному последовательному каналу микроконтроллера. Микроконтроллер по выборкам мгновенных значений напряжения и тока производит вычисление средних за период сети значений частоты, напряжения, тока активной и полной мощности в каждой фазе сети, производит их коррекцию по амплитуде, фазе и температуре. Счетчики имеют жидкокристаллический индикатор для отображения учетной энергии и измеряемых величин.

ИВК автоматически опрашивает счетчики АИИС КУЭ. В ИВК информация о результатах измерений приращений потребленной электрической энергии автоматически формируется в архивы и сохраняется на глубину не менее 3,5 лет по каждому параметру. Сформированные архивные файлы автоматически сохраняются на «жестком» диске.

ИВК автоматически формирует файл отчета с результатами измерений, в формате XML, и автоматически передает его в интегрированную автоматизированную систему управления коммерческим учетом (далее - ИАСУ КУ) ОАО «АТС».

Каналы связи не вносят дополнительных погрешностей в измеренные значения энергии и мощности, которые передаются от счетчиков в ИВК, поскольку используется цифровой метод передачи данных.

Система обеспечения единого времени (далее - СОЕВ) выполняет законченную функцию измерений времени и формируется на всех уровнях АИИС КУЭ.

Контроль времени в часах счетчиков АИИС КУЭ автоматически выполняет ИВК, при каждом сеансе опроса (один раз в 30 минут), корректировка часов счетчиков выполняется автоматически в случае расхождения времени часов в счетчике и ИВК на величину более ± 1 с.

Корректировка часов сервера ИВК выполняется автоматически от устройства синхронизации времени УСВ-3 (Госреестр № 51644-12, Зав. № 0057), принимающего сигналы точного времени от спутников глобальной системы позиционирования (GPS). Коррекция часов сервера ИВК происходит ежесекундно, расхождение не превышает ± 1 с.

Погрешность часов компонентов системы не превышает ± 5 с.

Защита от несанкционированного доступа предусмотрена на всех уровнях сбора, передачи и хранения коммерческой информации и обеспечивается совокупностью технических и организационных мероприятий.

Журналы событий счетчика электроэнергии и ИВК отражают время (дата, часы, минуты) коррекции часов указанных устройств и расхождение времени в секундах, корректируемого и корректирующего устройств в момент непосредственно предшествующий корректировке.

Программное обеспечение

Таблица 1 – Идентификационные данные ПО «Энергосфера», установленного в ИВК

Идентификационное наименование программного обеспечения	Номер версии (идентификационный номер) программного обеспечения	Цифровой идентификатор программного обеспечения (контрольная сумма исполняемого кода)	Алгоритм вы- числения циф- рового иденти- фикатора про- граммного обес- печения
1	2	3	4
Библиотека pso_metr.dll	1.1.1.1	CBEB6F6CA69318BED976E08A2 BB7814B	MD5

Метрологические характеристики ИК АИИС КУЭ, указанные в таблицах 3 и 4 нормированы с учетом ПО;

Защита программного обеспечения обеспечивается применением электронной цифровой подписи, разграничением прав доступа, использованием ключевого носителя. Уровень защиты – «высокий» в соответствии с Р 50.2.077-2014.

Метрологические и технические характеристики

Состав 1-го уровня ИК приведен в таблице 2, метрологические характеристики ИК в таблицах 3 и 4.

Таблица 2 – Состав 1-го уровня ИК

	ица 2 – Состав 1-го	<i>J</i> 1	рительные компоне	НТЫ	
Номер ИК	Наименование объекта	TT	ТН	Счетчик	Вид электро- энергии
1	ПС «УЭТМ» 110/6/10 кВ ЗРУ – 6 кВ 3 с. ш. яч. 1, исп. стенд КТУК - 1	ТПОЛ-10 Госреестр № 1261-59 Кл. т. 0,5 1500/5 Зав. № 13916 - Зав. № 6741	НТМИ-6-66 Госреестр № 2611-70 Кл. т. 0,5 6000/100 Зав. № 10972	СЭТ- 4ТМ.03М.01 Госреестр № 36697-12 Кл. т. 0,5S/1,0 Зав. № 0812124262	
2	ПС «УЭТМ» 110/6/10 кВ 3РУ – 6 кВ 3 с. ш. яч. 3, ТП – 5 Т – 1	ТПЛ-10 Госреестр № 1276-59 Кл. т. 0,5 100/5 Зав. № 33736 - Зав. № 44599	НТМИ-6-66 Госреестр № 2611-70 Кл. т. 0,5 6000/100 Зав. № 10972	СЭТ- 4ТМ.03М.01 Госреестр № 36697-12 Кл. т. 0,5S/1,0 Зав. № 0812124459	
3	ПС «УЭТМ» 110/6/10 кВ 3РУ – 6 кВ 3 с. ш. яч. 4, ТП – 16 ф. 1	ТПОЛ-10 Госреестр № 1261-59 Кл. т. 0,5 600/5 Зав. № 19386 - Зав. № 244442	НТМИ-6-66 Госреестр № 2611-70 Кл. т. 0,5 6000/100 Зав. № 10972	СЭТ- 4ТМ.03М.01 Госреестр № 36697-12 Кл. т. 0,5S/1,0 Зав. № 0812124612	активная, реактивная
4	ПС «УЭТМ» 110/6/10 кВ 3РУ – 6 кВ 3 с. ш. яч. 5, ТП – 6 ф. 1	ТПЛ-10 Госреестр № 1276-59 Кл. т. 0,5 400/5 Зав. № 18203 - Зав. № 40839	НТМИ-6-66 Госреестр № 2611-70 Кл. т. 0,5 6000/100 Зав. № 10972	СЭТ- 4ТМ.03М.01 Госреестр № 36697-12 Кл. т. 0,5S/1,0 Зав. № 0810120259	
5	ПС «УЭТМ» 110/6/10 кВ 3РУ – 6 кВ 3 с. ш. яч. 6, ТП – 5 Т – 2	ТПЛ-10 Госреестр № 1276-59 Кл. т. 0,5 100/5 Зав. № 44564 - Зав. № 44655	НТМИ-6-66 Госреестр № 2611-70 Кл. т. 0,5 6000/100 Зав. № 10972	СЭТ- 4ТМ.03М.01 Госреестр № 36697-12 Кл. т. 0,5S/1,0 Зав. № 0809120450	

Продолжение таблицы 2

	олжение таолицы 2		ерительные компон	енты	
Номер ИК	Наименование объекта	TT	ТН	Счетчик	Вид электро- энергии
6	ПС «УЭТМ» 110/6/10 кВ 3РУ – 6 кВ 3 с. ш. яч. 23, ТП – 2 ф. 1	ТПЛ-10 Госреестр № 1276-59 Кл. т. 0,5 400/5 Зав. № 41057 -	НТМИ-6-66 Госреестр № 2611-70 Кл. т. 0,5 6000/100 Зав. № 10972	СЭТ- 4ТМ.03М.01 Госреестр № 36697-12 Кл. т. 0,5S/1,0 Зав. № 0810120217	
7	ПС «УЭТМ» 110/6/10 кВ 3РУ – 6 кВ 3 с. ш. яч. 24, исп. ст. ц. 22	ТПОЛ-10 Госреестр № 1261-59 Кл. т. 0,5 600/5 Зав. № 22628 - Зав. № 02624	НТМИ-6-66 Госреестр № 2611-70 Кл. т. 0,5 6000/100 Зав. № 10972	СЭТ- 4ТМ.03М.01 Госреестр № 36697-12 Кл. т. 0,5S/1,0 Зав. № 0812124708	
8	ПС «УЭТМ» 110/6/10 кВ 3РУ – 6 кВ 2 с. ш. яч. 9, ТП – 6 ф. 2	ТПЛМ-10 Госреестр № 2363-68 Кл. т. 0,5 400/5 Зав. № 15649	НТМИ-6-66 Госреестр № 2611-70 Кл. т. 0,5 6000/100 Зав. № 11555	СЭТ- 4ТМ.03М.01 Госреестр № 36697-12 Кл. т. 0,5S/1,0 Зав. № 0810120210	активная, реактивная
9	ПС «УЭТМ» 110/6/10 кВ 3РУ – 6 кВ 2 с. ш. яч. 13, ТП – 2 ф. 2	ТПЛМ-10 Госреестр № 2363-68 Кл. т. 0,5 400/5 Зав. № 15738 - Зав. № 15698	НТМИ-6-66 Госреестр № 2611-70 Кл. т. 0,5 6000/100 Зав. № 11555	СЭТ- 4ТМ.03М.01 Госреестр № 36697-12 Кл. т. 0,5S/1,0 Зав. № 0810120203	
10	ПС «УЭТМ» 110/6/10 кВ 3РУ – 6 кВ 3 с. ш. яч. 15, ТП – 3	ТПОЛ-10 Госреестр № 1261-59 Кл. т. 0,5 600/5 Зав. № 12612 - Зав. № 18924	НТМИ-6-66 Госреестр № 2611-70 Кл. т. 0,5 6000/100 Зав. № 10972	СЭТ- 4ТМ.03М.01 Госреестр № 36697-12 Кл. т. 0,5S/1,0 Зав. № 0810120252	

Продолжение таблицы 2

	олжение таолицы 2		ерительные компон	енты	
Номер ИК	Наименование объекта	TT	ТН	Счетчик	Вид электро- энергии
11	ПС «УЭТМ» 110/6/10 кВ ЗРУ – 6 кВ 2 с. ш. яч. 16, ТП – 16 ф. 2	ТПОЛ-10 Госреестр № 1261-59 Кл. т. 0,5 600/5 Зав. № 128128 - Зав. № 12638	НТМИ-6-66 Госреестр № 2611-70 Кл. т. 0,5 6000/100 Зав. № 11555	СЭТ- 4ТМ.03М.01 Госреестр № 36697-12 Кл. т. 0,5S/1,0 Зав. № 0810120224	
12	ПС «УЭТМ» 110/6/10 кВ 3РУ – 6 кВ 2 с. ш. яч.18, КТУК – 2	ТПОЛ-10 Госреестр № 1261-59 Кл. т. 0,5 1500/5 Зав. № 12256 - Зав. № 14143	НТМИ-6-66 Госреестр № 2611-70 Кл. т. 0,5 6000/100 Зав. № 11555	СЭТ- 4ТМ.03М.01 Госреестр № 36697-12 Кл. т. 0,5S/1,0 Зав. № 0810120288	
13	ПС «УЭТМ» 110/6/10 кВ 3РУ – 6 кВ 2 с. ш. яч. 8, ТП – 14 ф. 1	ТПЛМ-10 Госреестр № 2363-68 Кл. т. 0,5 400/5 Зав. № 15674	НТМИ-6-66 Госреестр № 2611-70 Кл. т. 0,5 6000/100 Зав. № 11555	СЭТ- 4ТМ.03М.01 Госреестр № 36697-12 Кл. т. 0,5S/1,0 Зав. № 0812124623	активная, реактивная
14	ПС «УЭТМ» 110/6/10 кВ 3РУ – 6 кВ 3 с. ш. яч. 20, ТП – 14 ф. 2	ТПЛ-10 Госреестр № 1276-59 Кл. т. 0,5 400/5 Зав. № 35098	НТМИ-6-66 Госреестр № 2611-70 Кл. т. 0,5 6000/100 Зав. № 10972	СЭТ- 4ТМ.03М.01 Госреестр № 36697-12 Кл. т. 0,5S/1,0 Зав. № 0812124687	
15	ПС «УЭТМ» 110/6/10 кВ 3РУ – 6 кВ 2 с. ш. яч. 12, ТП – 4 ф. 1	ТПЛМ-10 Госреестр № 2363-68 Кл. т. 0,5 400/5 Зав. № 15796 - Зав. № 07676	НТМИ-6-66 Госреестр № 2611-70 Кл. т. 0,5 6000/100 Зав. № 11555	СЭТ- 4ТМ.03М.01 Госреестр № 36697-12 Кл. т. 0,5S/1,0 Зав. № 0812124764	

Окончание таблицы 2

K		Изме	ерительные компоне	нты	
Номер ИК	Наименование объекта	TT	ТН	Счетчик	Вид электро- энергии
16	ПС «УЭТМ» 110/6/10 кВ 3РУ – 6 кВ 3 с. ш. яч. 21, ТП – 4 ф. 2	ТПЛ-10 Госреестр № 1276-59 Кл. т. 0,5 400/5 Зав. № 34611 - Зав. № 41056	НТМИ-6-66 Госреестр № 2611-70 Кл. т. 0,5 6000/100 Зав. № 10972	СЭТ- 4ТМ.03М.01 Госреестр № 36697-12 Кл. т. 0,5S/1,0 Зав. № 0812124626	активная,
17	ПС «УЭТМ» 110/6/10 кВ 3РУ – 6 кВ 2 с. ш. яч. 17, исп. ст. ц. 13	ТПОЛ-10 Госреестр № 1261-59 Кл. т. 0,5 600/5 Зав. № 20027 - Зав. № 28926	НТМИ-6-66 Госреестр № 2611-70 Кл. т. 0,5 6000/100 Зав. № 11555	СЭТ- 4ТМ.03М.01 Госреестр № 36697-12 Кл. т. 0,5S/1,0 Зав. № 0812124772	реактивная

Таблица 3 – Метрологические характеристики ИК АИИС КУЭ (активная энергия)

			Me	етрологи	ческие х	карактері	истики И	K		
Номер ИК	омер ИК значений погре силы тока		Основная относительная погрешность ИК, (±d), %				Относительная погрешность ИК в рабочих условиях эксплуатации, (±d), %			
		$\cos j = 1,0$	$\cos j = 0.87$	$\cos j = 0.8$	$\cos j = 0.5$	$\cos j = 1.0$	$\cos j = 0.87$	$\cos j = 0.8$	$\cos j$ = 0,5	
1	2	3	4	5	6	7	8	9	10	
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,	$0.05 I_{H_1} \pounds I_1 < 0.2 I_{H_1}$	1,8	2,5	2,9	5,5	2,2	2,8	3,2	5,7	
	$0.2 ext{I}_{ ext{H}_1} \mathfrak{L} ext{I}_1 < ext{I}_{ ext{H}_1}$	1,2	1,5	1,7	3,0	1,7	1,9	2,1	3,3	
16, 17	Ін ₁ £ І ₁ £ 1,2Ін ₁	1,0	1,2	1,3	2,3	1,6	1,7	1,8	2,6	

Таблица 4 – Метрологические характеристики ИК АИИС КУЭ (реактивная энергия)

	Morris recently mapuning				характери		К
Номер ИК	Диапазон значений	Основная относительная погрешность ИК, (±d), %			Относительная погрешность ИК в рабочих условиях эксплуатации, (±d), %		
Помор ПК	силы тока	$\cos \mathbf{j} = 0.87$	$\cos j = 0.8$	$\cos j = 0.5$	$\cos \mathbf{j} = 0.87$	$\cos j = 0.8$	$\cos j = 0.5$
		$ \begin{array}{c} (\sin j = \\ 0,5) \end{array} $	$ \begin{array}{c} (\sin j = \\ 0,6) \end{array} $	$ \begin{array}{c} (\sin j = \\ 0.87) \end{array} $	$ \begin{array}{c} (\sin j = \\ 0,5) \end{array} $	$ \begin{array}{c} (\sin j = \\ 0,6) \end{array} $	$ \begin{array}{r} (\sin j = \\ 0.87) \end{array} $
1	2	3	4	5	6	7	8
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17	$0.05 \mathrm{I}_{\mathrm{H}_{1}} \ \mathfrak{L} \ \mathrm{I}_{1} < 0.2 \mathrm{I}_{\mathrm{H}_{1}}$	5,7	4,6	2,7	6,4	5,3	3,8
	$0,2$ Ін $_1$ £ І $_1 <$ Ін $_1$	3,2	2,6	1,8	4,2	3,8	3,2
	Ін ₁ £ І ₁ £ 1,2Ін ₁	2,5	2,1	1,5	3,7	3,4	3,0

Примечания:

- 1. Характеристики погрешности ИК даны для измерения электроэнергии и средней мощности (получасовая);
- 2. В качестве характеристик относительной погрешности указаны границы интервала, соответствующие вероятности 0,95;
 - 3. Нормальные условия:
 - параметры питающей сети: напряжение (220 ± 4.4) В; частота (50 ± 0.5) Гц;
- параметры сети: диапазон напряжения (0.98-1.02)Uн; диапазон силы тока (1.0-1.2)Ін; коэффициент мощности $\cos \phi (\sin \phi) 0.87(0.5)$; частота (50 ± 0.5) Γ ц;
- температура окружающего воздуха: TT от 15 °C до 35 °C; TH от 15 °C до 35 °C; счетчиков: от 21 °C до 25 °C; ИВК от 15 °C до 25 °C;
 - относительная влажность воздуха (70 ± 5) %;
 - атмосферное давление (100 \pm 4) кПа.
 - 4. Рабочие условия эксплуатации:

лля ТТ и ТН:

- параметры сети: диапазон первичного напряжения (0.9-1.1)Uн1; диапазон силы первичного тока (0.05-1.2)Iн1; диапазон коэффициента мощности $\cos\phi$ ($\sin\phi$) 0.5-1.0(0.6-0.87); частота (50 ± 0.5) Γ Ц;
 - температура окружающего воздуха от минус 35 °C до 35 °C;
 - относительная влажность воздуха (70 ± 5) %;
 - атмосферное давление (100 \pm 4) кПа.

Для электросчетчиков:

- параметры сети: диапазон вторичного напряжения (0.9-1.1)Uн2; диапазон силы вторичного тока (0.01-1.2)Iн2; диапазон коэффициента мощности $\cos \varphi$ $(\sin \varphi)$ 0.5-1.0 (0.6-0.87); частота (50 ± 0.5) Γ Ц;
 - магнитная индукция внешнего происхождения 0,5 мТл;
 - температура окружающего воздуха от 10 °C до 30 °C;
 - относительная влажность воздуха (40 60) %;
 - атмосферное давление (100 ± 4) кПа.

Для аппаратуры передачи и обработки данных:

- параметры питающей сети: напряжение (220 ± 10) B; частота (50 ± 1) Γ ц;
- температура окружающего воздуха от 10 °C до 30 °C;
- относительная влажность воздуха (70 ± 5) %;
- атмосферное давление (100 \pm 4) кПа
- 5. Допускается замена измерительных трансформаторов и счетчиков на аналогичные утвержденных типов с метрологическими характеристиками не хуже, чем у перечисленных в Таблипе 2.

Надежность применяемых в системе компонентов:

- счетчик среднее время наработки на отказ: для счетчиков типа СЭТ-4TM.03M не менее T = 165000 ч; среднее время восстановления работоспособности tB = 2 ч;
- сервер среднее время наработки на отказ не менее $T=45000\,$ ч, среднее время восстановления работоспособности $t = 1\,$ ч.

Надежность системных решений:

- резервирование питания ИВК с помощью источника бесперебойного питания и устройства ABP;
- резервирование каналов связи: информация о результатах измерений может передаваться с помощью электронной почты и сотовой связи;

В журналах событий счетчика фиксируются факты:

- параметрирование;
- пропадания напряжения;
- коррекции времени;

Защищённость применяемых компонентов:

- механическая защита от несанкционированного доступа и пломбирование:
- электросчётчика;
- промежуточных клеммников вторичных цепей напряжения;
- испытательной коробки;

Защита на программном уровне информации при хранении, передаче, параметрирование:

- пароль на счетчике;
- пароли на сервере, предусматривающие разграничение прав доступа к измерительным данным для различных групп пользователей.

Возможность коррекции времени в:

- электросчетчиках (функция автоматизирована);
- ИВК (функция автоматизирована).

Возможность сбора информации:

- о состоянии средств измерений (функция автоматизирована);
- о результатах измерений (функция автоматизирована).

Цикличность:

- измерений 30 мин (функция автоматизирована);
- сбора 30 мин (функция автоматизирована).

Глубина хранения информации:

- электросчетчик тридцатиминутный профиль нагрузки в двух направлениях при отключении питания: для счетчиков типа СЭТ-4TM.03M – не менее 30 лет;
- ИВК результаты измерений, состояние объектов и средств измерений не менее 3,5 лет.

Знак утверждения типа

Знак утверждения типа наносится на титульные листы эксплуатационной документации на систему автоматизированную информационно-измерительную коммерческого учета электроэнергии (АИИС КУЭ) ЗАО «Энергомаш (Екатеринбург) - Уралэлектротяжмаш» типографическим способом.

Комплектность средства измерений

Комплектность АИИС КУЭ определяется проектной документацией на АИИС КУЭ. В комплект поставки входит техническая документация на систему и на комплектующие средства измерений.

Комплектность АИИС КУЭ представлена в таблице 5.

Таблица 5 – Комплектность АИИС КУЭ

Наименование (обозначение) изделия	Количество (шт.)
Трансформаторы тока ТПОЛ-10, ТПЛ-10, ТПЛМ-10,	34
Трансформаторы напряжения НТМИ-6-66	2
Счетчик электроэнергии многофункциональные типа СЭТ-4ТМ.03М.01	17
Устройство синхронизации времени УСВ-3	1
ПО «Энергосфера»	1
Методика поверки	1
Формуляр	1
Инструкция по эксплуатации	1

Поверка

осуществляется по документу МП 56883-14 «Система автоматизированная информационноизмерительная коммерческого учета электроэнергии (АИИС КУЭ) ЗАО «Энергомаш (Екатеринбург) - Уралэлектротяжмаш». Методика поверки», утвержденному ФГУП «ВНИИМС» в феврале 2014 года.

Перечень основных средств поверки:

- трансформаторов тока в соответствии с ГОСТ 8.217-2003 «ГСИ. Трансформаторы тока. Методика поверки»,
- трансформаторов напряжения по ГОСТ 8.216-2011 «ГСИ. Трансформаторы напряжения. Методика поверки»,
- по МИ 3195-2009 «ГСИ. Мощность нагрузки трансформаторов напряжения без отключения цепей. Методика выполнения измерений»,
- по МИ 3196-2009 «ГСИ. Вторичная нагрузка трансформаторов тока без отключения цепей. Методика выполнения измерений»,
- счетчиков СЭТ-4ТМ.03М в соответствии с документом «Счетчики электрической энергии многофункциональные СЭТ-4ТМ.03М, СЭТ-4ТМ.02М. Руководство по эксплуатации. Часть 2. Методика поверки» ИЛГШ.411152.145РЭ1, утвержденному ГЦИ СИ ФБУ «Нижегородский ЦСМ» «04» мая 2012 г.;
- УСВ-3 в соответствии с документом «Инструкция. Устройства синхронизации времени УСВ-3. Методика поверки. ВЛСТ.240.00.000МП», утвержденным руководителем ГЦИ СИ ФГУП «ВНИИФТРИ» в 2012 г.,
- радиочасы МИР РЧ-01, принимающие сигналы спутниковой навигационной системы Global Positioning System (GPS), номер в Государственном реестре средств измерений 27008-04,
- переносной компьютер с ПО и оптический преобразователь для работы со счетчиком АИИС КУЭ и с ПО для работы с радиочасами МИР РЧ-01,

- термогигрометр CENTER (мод.314): диапазон измерений температуры от -20 до +60 °C, дискретность 0,1 °C; диапазон измерений относительной влажности от 10 до 100 %, дискретность 0,1 %.

Сведения о методиках (методах) измерений

Метод измерений изложен в документе Методика измерений электрической энергии и мощности с использованием системы автоматизированной информационно-измерительной коммерческого учета электроэнергии (АИИС КУЭ) ЗАО «Энергомаш (Екатеринбург) - Уралэлектротяжмаш», свидетельство об аттестации методики измерений № 01.00225/206-019-14 от $10.02.2014~\Gamma$.

Нормативные и технические документы, устанавливающие требования к системе автоматизированной информационно-измерительной коммерческого учета электроэнергии (АИИС КУЭ) ЗАО «Энергомаш (Екатеринбург) - Уралэлектротяжмаш»

ГОСТ Р 8.596-2002 «ГСИ. Метрологическое обеспечение измерительных систем. Основные положения».

ГОСТ 22261-94 «Средства измерений электрических и магнитных величин. Общие технические условия».

ГОСТ 34.601-90 «Информационная технология. Комплекс стандартов на автоматизированные системы. Автоматизированные системы. Стадии создания».

Методика измерений электрической энергии и мощности с использованием системы автоматизированной информационно-измерительной коммерческого учета электро-энергии (АИИС КУЭ) ЗАО «Энергомаш (Екатеринбург) - Уралэлектротяжмаш», свидетельство об аттестации методики измерений N_{\odot} 01.00225/206-019-14 от 10.02.2014 г.

Рекомендации по областям применения в сфере государственного регулирования обеспечения единства измерений

- при осуществлении торговли.

Изготовитель

ООО «АРСТЭМ - ЭнергоТрейд»

Юридический адрес: 620026, г. Екатеринбург, ул. Мамина-Сибиряка, 126

Почтовый адрес: 620075 г. Екатеринбург, ул. Красноармейская, 26, ул. Белинского, 9

Тел.: +7 (343) 310 - 70 - 80 Факс: +7 (343) 310 - 32 - 18

Заявитель

ООО «ЕвроМетрология»

Юридический/почтовый адрес: 140000, Московская область, Люберецкий район,

г. Люберцы, ул. Красная, д. 4.

Тел. +7 (926) 786-90-40

Испытательный центр

Федеральное государственное унитарное предприятие «Всероссийский научно-исследовательский институт метрологической службы» (ФГУП «ВНИИМС»)

Адрес: 119361, г. Москва, ул. Озерная, д.46 Тел./факс: (495)437-55-77 / 437-56-66; E-mail: office@vniims.ru, www.vniims.ru

Аттестат аккредитации ФГУП «ВНИИМС» по проведению испытаний средств измерений в це-

лях утверждения типа № 30004-13 от 26.07.2013 г.

Заместитель Руководителя
Федерального агентства по техническому
регулированию и метрологии

Ф.В. Булыгин

М.п. «___»____2014 г.