ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Система измерений акустической интенсивности AIMS III

Назначение средства измерений

Система измерений акустической интенсивности AIMS III (далее – СИАИ) предназначена для измерений ультразвуковых выходных характеристик медицинского диагностического и терапевтического ультразвукового оборудования.

Описание средства измерений

Конструктивно СИАИ состоит из:

- резервуара для сканирования и устройства автоматического позиционирования гидрофона AST;
 - электронного блока управления шаговыми двигателями (EMDS-USB);
 - цифрового осциллографа с интерфейсом;
 - системного контроллера на базе ПК;
 - гидрофонов с предусилителями;
- принадлежностей для крепления гидрофона и испытуемого ультразвукового преобразователя;
 - углового позиционера для юстировки направления оси ультразвукового пучка;
- водного кондиционера MECS для подготовки воды (дегазации, деионизации, поддержания требуемой температуры).

Принцип действия СИАИ основан на измерении акустического давления в ультразвуковом поле, генерируемом испытуемым ультразвуковым преобразователем (датчиком, лечебной головкой), с помощью гидрофона методом плоского растрового сканирования в заданной плоскости, перпендикулярной оси ультразвукового пучка.

СИАИ обеспечивает:

- определение пространственного положения оси ультразвукового пучка и точек на ней с максимальными значениями акустического давления и интенсивности;
- преобразование измеренных значений акустического давления в параметры интенсивности (усредненной по времени и пространству, пик-пространственной усредненной по времени, пик-пространственной усредненной за импульс);
- определение параметров безопасности механического и тепловых индексов по ГОСТ Р МЭК 60601-2-37-2009 и ГОСТ Р МЭК 62359-2011 и параметров акустического выхода по ГОСТ Р МЭК 61157-2008 для приборов ультразвуковой диагностики;
- определение параметров акустического выхода по ГОСТ Р 50267.5-92 и ГОСТ Р 8.583-2001 для аппаратов ультразвуковой терапии с помощью специального программного обеспечения.

СИАИ работает под управлением специализированного программного обеспечения (ΠO) Soniq 5.0.

Внешний вид СИАИ, схема пломбировки от несанкционированного доступа и место нанесения наклейки со знаком утверждения типа приведены на рисунке 1.

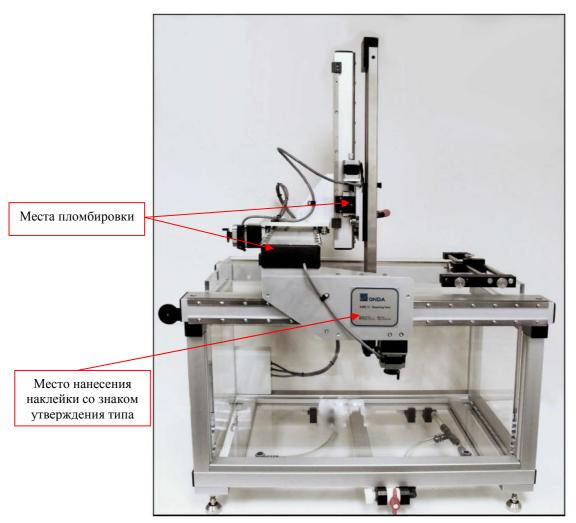


Рисунок 1

Программное обеспечение

Для управления режимами СИАИ и обработки измерительных сигналов применяется ПО «Soniq 5.0 Software for AIMS III», обеспечивающее:

- управление осциллографом, функциональным генератором, пяти координатным электронным блоком управления шаговыми двигателями, кондиционером воды;
- юстировку (предустановки), поиск оси ультразвукового пучка и позиций по осям и в плоскости, получение формы сигнала, усреднение сигнала;
- расчет параметров интенсивности и давления как в воде, так и с учетом затухания в другой жидкой среде;
- расчет механического индекса (MI) и термальных индексов (TIS, TIB, TIC) в соответствии с ГОСТ Р МЭК 62359-2011;
- расчет соответствующих акустических параметров (длительности импульса, ширины пучка, частоты акустического воздействия и т.д.);
 - расчет акустической мощности по результатам сканирования;
- расчет эффективной площади излучения и коэффициента неоднородности пучка лечебных головок аппаратов ультразвуковой терапии в соответствии с требованиями FDA и стандартов МЭК;

- формирование результатов в файлах специального формата, экспорт и печать данных, создание результирующих таблиц акустического выхода медицинских приборов ультразвуковой диагностики в соответствии с ГОСТ Р МЭК 60601-2-37-2009.

Идентификационные данные (признаки) метрологически значимой части ПО указаны в таблице 1.

Таблица 1

- 0				
	Идентификационное	Номер версии	Цифровой идентификатор ПО	Алгоритм
	наименование	(идентифика-	(контрольная сумма испол-	вычисления
	ПО	ционный номер) ПО	няемого кода)	идентифи-
				катора ПО
	Soniq 5.0	5.0.9.0,		
	Somq 3.0	серийный № 0160	-	-

Метрологически значимая часть ПО СИАИ и измеренные данные не требуют специальных средств защиты. Защита ПО от непреднамеренных и преднамеренных изменений соответствует уровню «А» по МИ 3286-2010.

Метрологические и технические характеристики

Метрологические и технические характеристики СИАИ приведены в таблице 2. Таблица 2

Наименование характеристики	Значение	
	характеристики	
Рабочий диапазон частот гидрофонов и предусилителя, МГц	от 1,0 до 20	
Неравномерность АЧХ гидрофонов и предусилителей в рабочем	± 2	
диапазоне частот, дБ, не более		
Диапазон перемещения гидрофона по осям, мм, не менее:		
Х (параллельно длине резервуара)	580	
Ү (параллельно ширине резервуара)	480	
Z (параллельно высоте резервуара)	470	
Минимальное перемещение (шаг) гидрофона по каждой оси, мм,	0,011	
не более	0,011	
Пределы допускаемой абсолютной погрешности устройства	± 0,05	
позиционирования, мм	± 0,03	
Пределы допускаемой относительной погрешности		
преобразования акустического давления в электрическое		
напряжение (погрешности калибровки гидрофонов), %	± 15	
Пределы допускаемой относительной погрешности измерений	± 2	
амплитудных значений электрического сигнала, %	± 2	
Пределы допускаемой относительной погрешности измерений	. 0.0015	
временных параметров электрического сигнала, %	$\pm 0,0015$	
Пределы допускаемой относительной погрешности измерений	± 12,6	
мощности ультразвукового пучка, %		
Габаритные размеры резервуара для сканирования	890×510×580	
(длина×ширина×высота), мм, не менее		
Габаритные размеры водного кондиционера MECS	864×660×711	
(длина×ширина×высота), не менее		

Мощность дегазации водного кондиционера MECS (снижение содержания растворенного в воде кислорода в открытой емкости объемом 100 л после 5 ч откачки при начальной концентрации 10 мг/л), мг/л, не менее	4
Потребляемая мощность от сети переменного тока 220 B, B·A, не более	840
Рабочие условия эксплуатации: - температура окружающего воздуха, °C - относительная влажность воздуха (при температуре 30 °C), %,	20 ± 5
не более - атмосферное давление, кПа	от 45 до 80 от 90 до 110

Знак утверждения типа

наносится на титульный лист руководства по эксплуатации типографским способом и на устройство позиционирования в виде наклейки.

Комплектность средства измерений

Комплект поставки приведен в таблице 3. Таблица 3

Наименование	Количество
Резервуар для сканирования и устройство позиционирования AST3-L	1 шт.
Электронный блок управления двигателями EMDS-USB-E	1 шт
Осциллограф цифровой DSO 7012B	1 шт
Генератор сигналов произвольной формы 33220А	1 шт
Системный контроллер: ПЭВМ под управление ОС Windows7	1 шт.
Гидрофон HGL-0200	1 шт
Гидрофон HGL-0085	1 шт
Предусилитель AG-2010	1 шт.
Гдрофон НМВ-0200	1 шт
Блок питания предусилителя	1 шт
Кабель гидрофона	1 шт
Угловой адаптер	1 шт
Набор принадлежностей для крепления датчиков и гидрофонов	1 комп.
Программное обеспечение Soniq 5.0, версия 5.0.9.0	1 экз.
Ключ USB программы Soniq 5.0	1 шт
Угловой позиционер АР-02	1 шт
Водный кондиционер Onda Corp. MECS220	1 шт
Интерфейсные кабели	1 комп.
Руководство по эксплуатации	1 экз.
Инструкция. Капсюли микрофонные конденсаторные МК-265. Методика поверки	1 экз.
Формуляр	1 экз.

Поверка

осуществляется по документу 945-0016-02 МП «Инструкция. Система измерений акустической интенсивности AIMS III. Методика поверки», утвержденному первым заместителем генерального директора-заместителем по научной работе Φ ГУП «ВНИИ Φ ТРИ» в декабре 2013 г.

Основные средства поверки:

- эталонный излучатель E-30 из состава ГЭТ 169: рабочая частота 1,930 МГц, пределы допускаемых относительных погрешностей \pm 7 %);
- генератор сигналов произвольной формы 33250A (рег. № 52150-12): диапазон частот от $1 \cdot 10^{-6}$ Γ ц до 80 М Γ ц, пределы допускаемой погрешности частоты выходного сигнала $1 \cdot 10^{-6}$, максимальное выходное напряжение 10 В;
- вольтметр переменного тока B3-63 (рег. № 10908-87): диапазон измерений от 10 мВ до 100 В, пределы допускаемой погрешности измерений \pm (0,5 2) %.

Сведения о методиках (методах) измерений

Система измерения акустической интенсивности AIMS III. Руководство по эксплуатации 945-0016-02РЭ.

Нормативные и технические документы, устанавливающие требования к системе измерения акустической интенсивности AIMS III

ГОСТ Р МЭК 62127-1-2009 «ГСИ. Параметры полей ультразвуковых. Общие требования к методам измерения и способам описания полей в частотном диапазоне от 0,5 до $40~\rm M\Gamma u$ »:

ГОСТ Р МЭК 62127-2-2009 «ГСИ. Гидрофоны. Общие требования к методикам калибровки в частотном диапазоне до 40 МГц»;

ГОСТ Р МЭК 62127-3-2010 «ГСИ. Гидрофоны. Общие требования к характеристикам для измерений параметров ультразвуковых полей в частотном диапазоне от 0,5 до 40 МГц»;

ГОСТ Р 8.583-2001 «Государственная система обеспечения единства измерений. Оборудование медицинское ультразвуковое терапевтическое. Общие требования к методикам выполнения измерений параметров акустического выхода в диапазоне частот от 0,5 до 5,0 МГц».

ГОСТ Р 50267.5-92 «Изделия медицинские электрические. Часть 2. Частные требования безопасности к аппаратам для ультразвуковой терапии»;

ГОСТ Р МЭК 61157-2008 «Государственная система обеспечения единства измерений. Изделия медицинские электрические. Приборы ультразвуковой диагностики. Требования к предоставлению параметров акустического выхода в технической документации»;

ГОСТ Р МЭК 62359-2011 «Оборудование медицинское. Общие требования к методикам определения механического и тепловых индексов безопасности полей медицинских приборов ультразвуковой диагностики»;

ГОСТ Р МЭК 60601-2-37-2009 «Изделия медицинские электрические. Часть 2-37. Частные требования к безопасности и основным характеристикам ультразвуковой медицинской диагностической и контрольной аппаратуры»;

ГОСТ Р МЭК 61828-2012 «ГСИ. Преобразователи ультразвуковые фокусирующие. Общие требования к методикам измерения параметров ультразвукового излучения».

Рекомендации по областям применения в сфере государственного регулирования обеспечения единства измерений

Выполнение работ по оценке соответствия промышленной продукции и продукции других видов, а также иных объектов установленным законодательством Российской Федерации обязательным требованиям.

Изготовитель

Фирма «Onda Corporation », США 1290 Hammerwood Avenue, Sunnyvale, CA 94089.

Заявитель

Закрытое акционерное общество «Научно-производственная фирма «БИОСС» (ЗАО «НПФ «БИОСС»)

Юридический (почтовый) адрес: 124460, г. Москва, Зеленоград, проезд 4922, д. 4, стр.2. Телефон: (495) 276-27-90, факс: (495) 276-27-93.

Испытательный центр

Федеральное государственное унитарное предприятие «Всероссийский научно-исследовательский институт физико-технических и радиотехнических измерений» (Φ ГУП «ВНИИ Φ ТРИ»).

Юридический адрес: 141570, Московская обл., Солнечногорский р-н, городское поселение Менделеево, Главный лабораторный корпус.

Почтовый адрес: 141570, Московская обл., Солнечногорский р-н, п/о Менделеево.

Телефон/факс: (495) 526-63-00, E-mail: office@vniiftri.ru.

Аттестат аккредитации Φ ГУП «ВНИИ Φ ТРИ» по проведению испытаний средств измерений в целях утверждения типа № 30002-13 от 07.10.2013 г.

Заместитель Руководителя Федерального агентства по техническому регулированию и метрологии

Ф.В. Булыгин

«____»____2014 г.

М.п.