ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Система измерений количества и показателей качества нефтепродуктов нефтебазы Челнинского филиала ООО «Татнефть - АЗС Центр

Назначение средства измерений

Системы измерений количества и показателей качества нефтепродуктов нефтебазы Челнинского филиала ООО «Татнефть - АЗС Центр» (далее – система) предназначена для автоматического измерения количества и показателей качества нефтепродуктов на нефтебазе Челнинского филиала ООО «Татнефть-АЗС Центр».

Описание средства измерений

Принцип действия системы основан на использовании прямого метода динамических измерений массы нефтепродукта с помощью кориолисовых преобразователей массового расхода. Выходные электрические сигналы с кориолисовых преобразователей массового расхода поступают на соответствующие входы измерительно-вычислительного комплекса, который вычисляет массу нефтепродукта по реализованному в нем алгоритму.

Система представляет собой единичный экземпляр измерительной системы целевого назначения, спроектированной для конкретного объекта и состоящей из блока измерений количества нефтепродукта, блока измерений качества нефтепродукта, места для подключения установки передвижной поверочной (далее – ПУ), системы обработки информации и системы дренажа. Монтаж и наладка системы осуществлены непосредственно на объекте эксплуатации в соответствии с проектной и эксплуатационной документацией на систему и ее компоненты.

Система состоит из двух (двух рабочих и одного контрольно-резервного) измерительных каналов массы нефтепродукта, а также измерительных каналов температуры, давления, разности давления, объемного расхода в блоке измерений качества нефтепродукта, в которые входят следующие средства измерений:

- счётчики-расходомеры массовые Micro Motion CMF 400 в комплекте с измерительными преобразователями серии 2700 (далее CPM), Госреестр № 13425-06;
 - счетчика нефти турбинного МИГ исполнения 32Ш, Госреестр № 26776-08;
 - преобразователи давления измерительные 3051, Госреестр № 14061-10;
 - датчики температуры 644, Госреестр № 39539-08.
 - В систему обработки информации системы входят:
- контроллеры измерительно-вычислительные OMNI-6000 с функцией резервирования, Госреестр № 15066-04, свидетельство № 2301-05м-2009 об аттестации алгоритмов и программного обеспечения от 15 октября 2009 г.
- комплекс программный автоматизированный рабочего места оператора (APM оператора «Сфера») № 271601-08 от 26.12.2008 г.

В состав системы входят показывающие средства измерений:

- манометры показывающие для точных измерений МПТИ, Госреестр № 26803-11;
- термометры ртутные стеклянные лабораторные ТЛ-4 № 2, Госреестр № 303-91.

Система обеспечивает выполнение следующих основных функций:

- автоматическое измерение массы нефтепродуктов прямым методом динамических измерений в рабочих диапазонах расхода, температуры и давления нефтепродуктов;
- автоматическое измерение температуры и давления в БИЛ, БИК, входном коллекторах БИЛ, на входе и выходе УППУ;
- -контроль разности давления на фильтрах БИЛ с применением показывающих средств измерений давления;
 - -контроль герметичности запорной арматуры;
 - автоматическое измерение объемного расхода нефтепродуктов в БИК;

- измерение давления и температуры с применением показывающих средств измерений давления и температуры соответственно;
- контроль метрологических характеристик (KMX) рабочих CPM с применением контрольного CPM;
- KMX и поверка CPM с применением передвижной ПУ на базе массомеров или комплектом передвижной поверочной установки и преобразователя плотности;
- автоматический контроль параметров измеряемого потока, их индикацию и сигнализацию нарушений установленных границ;
- защита алгоритма и программы контроллеров измерительно-вычислительных OMNI 6000 и APM оператора от несанкционированного доступа системой паролей;
 - автоматический и ручной отбор проб нефтепродуктов;
 - система дренажа нефтепродуктов;
 - регистрация и хранение результатов измерений, формирование отчетов.

Программное обеспечение

Программное обеспечение (ПО) системы (ПО контроллеров измерительновычислительных ОМNI-6000, ПО комплекса программного АРМ оператора «Сфера») обеспечивает реализацию функций системы. ПО системы разделено на метрологически значимую и метрологически не значимую части. Первая хранит все процедуры, функции и подпрограммы, осуществляющие регистрацию, обработку, хранение, отображение и передачу результатов измерений параметров технологического процесса, а также защиту и идентификацию ПО системы. Вторая хранит все библиотеки, процедуры и подпрограммы взаимодействия с операционной системой и периферийными устройствами (не связанные с измерениями параметров технологического процесса). Наименования ПО и идентификационные данные указаны в таблице 1.

Таблица1 – Идентификационные данные ПО

таолица	т пдоптирикаци	топпыс даппыс 110		
Наименование ПО	Идентификаци- онное наимено- вание ПО	Номер версии (идентификаци- онный номер) ПО	Цифровой иден- тификатор ПО (контрольная сумма исполняе- мого кода)	Алгоритм вычисления цифрового идентификатора ПО
ПО контроллера измерительного OMNI 6000 (основной)	Операционная система OMNI 6000	24.75.04	9111	CRC 16
ПО контроллера измерительного OMNI 6000 (резервный)	Операционная система OMNI 6000	24.75.04	9111	CRC 16
ПО комплекса программного автоматизированного рабочего места оператора (APM «Сфера»)	APM.exe	3.0.0.0	07E8BEE3	CRC 32

Защита ПО системы от непреднамеренных и преднамеренных изменений и обеспечение его соответствия утвержденному типу, осуществляется путем: разделения, идентификации, защиты от несанкционированного доступа.

Идентификация ПО системы осуществляется путем отображения на мониторе операторской станций управления структуры идентификационных данных. Часть этой структуры, относящаяся к идентификации метрологически значимой части ПО системы, представляет собой хэш-сумму (контрольную сумму) по значимым частям.

ПО системы защищено от несанкционированного доступа, изменения алгоритмов и установленных параметров, путем ввода логина и пароля, ведения журнала событий, доступного только для чтения. Доступ к метрологически значимой части ПО системы для пользователя закрыт. При изменении установленных параметров (исходных данных) в ПО системы обеспечивается подтверждение изменений, проверка изменений на соответствие требованиям реализованных алгоритмов, при этом сообщения о событиях (изменениях) записывается в журнал событий, доступный только для чтения. Данные, содержащие результаты измерений, защищены от любых искажений путем кодирования. Уровень защиты ПО системы от непреднамеренных и преднамеренных изменений соответствует уровню защиты «С» по МИ 3286-2010 «Рекомендация. Проверка защиты программного обеспечения и определение ее уровня при испытаниях средств измерений в целях утверждения типа».

Метрологические и технические характеристики

Основные метрологические и технические характеристики системы приведены в таблице 1. Т а б л и ц а 1 – Основные метрологические и технические характеристики системы

Наименование характеристики	Значение			
	характеристики			
Измеряемая среда	Нефтепродукты			
Диапазон измерений расхода, т/ч	От 60 до 600			
Диапазон измерений давления, МПа	От 0,05 до 4,0			
Диапазон измерений температуры, °C	От 0 до 35			
Кинематическая вязкость, сСт, не более	40			
Диапазон измерений плотности, кг/м ³	От 820 до 850			
Содержание воды, мг/кг, не более	200			
Общее загрязнение, мг/кг, не более	24			
Пределы допускаемой абсолютной погрешности средств изме-				
рений температуры измеряемой среды, °С	$\pm 0,2$			
Пределы допускаемой приведенной погрешности измерений				
давления измеряемой среды, %	$\pm 0,5$			
Пределы допускаемой относительной погрешности измерений				
массы и массового расхода нефтепродуктов, %	$\pm 0,\!25$			
Режим работы системы	Непрерывный			
Параметры электропитания				
- напряжение переменного тока, В	380В 3-х фазное,			
	220 однофазное			

Знак утверждения типа

наносится справа в нижней части титульного листа инструкции по эксплуатации системы типографским способом.

Комплектность средства измерений

- система измерений количества и показателей качества нефтепродуктов нефтебазы
 Челнинского филиала ООО «Татнефть АЗС Центр», 1 шт., заводской № 02-13;
 - инструкция по эксплуатации системы;
- −«ГСИ. Система измерений количества и показателей качества нефтепродуктов нефтебазы Челнинского филиала ООО «Татнефть АЗС Центр». Методика поверки» МП 0111-14-2013.

Поверка

осуществляется по документу МП 0111-14-2013 «ГСИ. Система измерений количества и показателей качества нефтепродуктов нефтебазы Челнинского филиала ООО «Татнефть - АЗС Центр». Методика поверки», утвержденному ФГУП ВНИИР 18 ноября 2013 г.

Основные средства поверки:

- установка передвижная поверочная с диапазоном измерений расхода, обеспечивающим возможность проведения поверки СРМ в их рабочем диапазоне измерений и пределами допускаемой относительной погрешности $\pm 0.11 \%$;
- устройство для поверки вторичной измерительной аппаратуры узлов учета нефти и нефтепродуктов УПВА, пределы допускаемой абсолютной погрешности воспроизведений силы постоянного тока \pm 3 мкА в диапазоне от 0,5 до 20 мА, пределы допускаемой относительной погрешности воспроизведений частоты и периода следования импульсов \pm 5×10⁻⁴ в диапазоне от 0,1 до 15000 Гц, пределы допускаемой абсолютной погрешности воспроизведений количества импульсов в пачке \pm 2 имп. в диапазоне от 20 до 5×10⁸ имп.;
- калибратор температуры модели ATC 156 B, диапазон воспроизводимых температур от минус 40 °C до 155 °C, пределы допускаемой абсолютной погрешности \pm 0,04 °C;
- калибратор многофункциональный модели ASC300-R: внешний модуль давления нижний предел воспроизведения давления 0 бар, верхний предел воспроизведения давления 1,03424 бар (15 psi), пределы допускаемой основной погрешности \pm 0,025 % от верхнего предела измерений; внешний модуль давления нижний предел воспроизведения давления 0 бар, верхний предел воспроизведения давления 206 бар, пределы допускаемой основной погрешности \pm 0,025 % от верхнего предела измерений.

Сведения о методиках (методах) измерений

Методика измерений приведена в документе «ГСИ. Масса нефтепродуктов. Методика измерений с применением системы измерений количества и показателей качества нефтепродуктов нефтебазы Челнинского филиала ООО «Татнефть - АЗС Центр»» (свидетельство об аттестации методики измерений № 01.00257-2008/212014-13 от 22.10.2013 г.).

Нормативные и технические документы, устанавливающие требования к системе измерений количества и показателей качества нефтепродуктов нефтебазы Челнинского филиала ООО «Татнефть - АЗС Центр»

- 1 ГОСТ 8.510-2002 «ГСИ. Государственная поверочная схема для средств измерений объема и массы жидкости».
- 2 ГОСТ Р 8.596-2002 Государственная система обеспечения единства измерений. Метрологическое обеспечение измерительных систем. Основные положения.
- 3 Технический проект «Реконструкция системы измерений количества и показателей качества нефтепродуктов нефтебазы Челнинского филиала ООО «Татнефть АЗС Центр». Пояснительная записка. 0034.00.00.000 ПЗ».
 - 4 Инструкция по эксплуатации системы.

Рекомендации по областям применения в сфере государственного регулирования обеспечения единства измерений — осуществление торговли и товарообменных операций.

Изготовитель

ООО «Уфанефтегазмаш»

Юридический/Почтовый адрес: 450112, Россия, Республика Башкортостан, г. Уфа, Юбилейная улица, 21

Тел.: +7 (347) 240-55-85

Заявитель

ООО «Корвол»,.

Адрес: 423450, РТ, г. Альметьевск, Базовая 1. Тел/факс 8 (8553) 45-65-11

Испытательный центр

Государственный центр испытаний средств измерений (ГЦИ СИ) Федеральное государственное унитарное предприятие «Всероссийский научно-исследовательский институт расходометрии» (ФГУП ВНИИР)

Юридический адрес: РФ, РТ, г. Казань, ул. 2-ая Азинская, д. 7 А

Тел.: 8 (843) 272-70-62, факс: 8 (843) 272-00-32, e-mail: vniirpr@bk.ru

Аттестат аккредитации ГЦИ СИ ФГУП «ВНИИР» по проведению испытаний средств измерений в целях утверждения типа № 30006-09 от 16.12.2009 г.

Заместитель Руководителя			
Федерального агентства			Ф.В. Булыгин
по техническому регулированию			
и метрологии	М.п.	« »	2014 г