ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Каналы измерительно – информационные системы автоматизированной информационно-измерительной коммерческого учета электроэнергии (АИИС КУЭ) ОАО «Ковдорский ГОК»

Назначение средств измерений

Каналы измерительно – информационные системы автоматизированной информационно-измерительной коммерческого учета электроэнергии (АИИС КУЭ) ОАО «Ковдорский ГОК» (далее по тексту – ИИК) предназначены для измерения активной и реактивной электрической энергии в составе системы автоматизированной информационно-измерительной коммерческого учета электрической энергии АИИС КУЭ ОАО «Ковдорский ГОК» (Гос. реестр № 49596-12).

Описание средств измерений

ИИК состоят из двух уровней:

1-ый уровень — измерительные трансформаторы напряжения (ТН), измерительные трансформаторы тока (ТТ), многофункциональные счетчики активной и реактивной электрической энергии (далее по тексту — счетчики), вторичные измерительные цепи и технические средства приема-передачи данных;

2-й уровень – информационно-вычислительный комплекс (ИВК) АИИС КУЭ ОАО «Ковдорский ГОК» (далее - ИВК АИИС КУЭ ОАО «Ковдорский ГОК»), который включает в себя устройство сбора и передачи данных (далее по тексту - УСПД) типа RTU-327 зав. № 006042 (Госсреестр № 41907-09), блок коррекции времени (БКВ) ЭНКС-2 зав. № 900 (Гос. реестр № 37328-08), сервер сбора, обработки и хранения данных ОАО «Ковдорский ГОК» (далее по тексту – сервер), автоматизированные рабочие места операторов, технические средства приемапередачи данных, каналы связи для обеспечения информационного взаимодействия между уровнями системы, а также совокупность аппаратных, каналообразующих и программных средств, выполняющих сбор информации с нижних уровней, ее обработку и хранение.

Принцип действия:

Первичные токи и напряжения преобразуются измерительными трансформаторами в аналоговые унифицированные сигналы, которые по проводным линиям связи поступают на измерительные входы счетчика электроэнергии. В счетчике мгновенные значения аналоговых сигналов преобразуются в цифровой сигнал. По мгновенным значениям силы электрического тока и напряжения в микропроцессоре счетчика вычисляются соответствующие мгновенные значения активной, реактивной и полной мощности без учета коэффициентов трансформации. Электрическая энергия, как интеграл по времени от мощности, вычисляется для интервалов времени 30 мин.

Цифровой сигнал с выходов счетчиков по цифровым интерфейсам RS-485, через преобразователь RS-485/Etherhet и далее (основной канал передачи данных) посредством медиаконвектора и волоконно-оптической линии или (резервный канал передачи данных) посредством телефонных кабелей связи и SHDSL-модемов, через коммутатор поступает в УСПД, где происходит обработка, накопление, хранение, отображение измерительной информации. Считанные данные результатов измерений приводятся к реальным значениям с учетом коэффициентов трансформации ТТ и ТН и заносятся в базу данных. Также в базу данных заносятся журналы событий счетчиков.

Сервер автоматически в заданные интервалы времени по цифровым каналам связи производит считывание из УСПД данных коммерческого учета электроэнергии и записей журнала событий, которые обрабатываются и записываются в энергонезависимую память сервера. Доступ к информации, хранящейся в базе данных сервера, осуществляется с АРМ операторов АИИС КУЭ. Посредством ПО «АльфаЦЕНТР», установленного на АРМ и сервере, обеспечивается передача в ОАО «АТС» и прочим заинтересованным организациям в рамках согласованного регламента.

Синхронизация часов в счетчиках ИИК с единым календарным временем выполняется системой обеспечения единого времени (СОЕВ) АИИС КУЭ ОАО «Ковдорский ГОК».

Сравнение показаний часов счетчиков ИИК и ИВК АИИС КУЭ ОАО «Ковдорский ГОК» происходит при каждом обращении к счетчику ИИК. Синхронизация осуществляется при расхождении показаний часов счетчиков ИИК и ИВК АИИС КУЭ ОАО «Ковдорский ГОК» на величину более чем $\pm 1,0$ с.

Программное обеспечение

В состав программного обеспечения ИИК (далее по тексту – Π O) входит: базовое (системное) Π O, включающее операционную систему, программы обработки текстовой информации, сервисные программы, программные средства СБД ИИК - Π O систем управления базами данных (СУБД SQL), и прикладное – Π O «АльфаЦЕНТР», программные средства счетчиков электроэнергии – встроенное Π O счетчиков электроэнергии, Π O COEB.

Состав программного обеспечения ИИК приведён в таблице 1.

Таблица 1

Идентификационное на-	Номер вер-	Цифровой идентификатор программного	Алгоритм вычисления
именование программно-	сии про-	обеспечения (контрольная сумма исполняемо-	цифрового идентифика-
го обеспечения	граммного	го кода)	тора программного
	обеспечения		обеспечения
Amrserver.exe		9477D821EDF7CAEBE91E7FC6F64A696C	MD5
Amrc.exe		6AA158FCDAC5F6E000D546FA74FD90B6	
Amra.exe	106472766	4BBBB813C47300FFFD82F6225FED4FFA	
Cdbora2.dll	1004/2/00	BAD5FB6BABB1C9DFE851D3F4E6C06BE2	
encryptdll.dll		0939CE05295FBCBBBA400EEAE8D0572C	
alphamess.dll		B8C331ABB5E34444170EEE9317D635CD	

ПО «АльфаЦЕНТР» не влияет на метрологические характеристики ИИК

Уровень защиты программного обеспечения ИИК от непреднамеренных и преднамеренных изменений соответствует уровню С по МИ 3286-2010.

Метрологические и технические характеристики

Состав ИИК приведен в Таблице 2.

Метрологические характеристики ИИК приведены в Таблице 3.

Таблица 2

		Состав ИИК				
Диспетчерское наименование Трансформатор ИИК тока	Трансформатор напряжения	Счетчик электри- ческой энергии	ИВК	элек- тро- энергии		
1	2	3	4	5	6	7
32	ПС 40А 150/35/6 кВ 3PУ-6кВ яч. № 13 «ДГР-2»	ТЛМ-10 Кл. т. 0,5 100/5 Зав. № 1240 Зав. № 1249 Госреестр № 2473-69	НТМИ-6-66 Кл.т. 0,5 6000/100 Зав. № ПСКВ Госреестр № 2611-70	A1805RALQ- P4GB- DW4 Кл. т. 0,5S/1,0 Зав. № 01267937 Госреестр № 31857-11	ИВК АИИС КУЭ ОАО «Ко- вдорский ГОК»	Активная Реактив- ная

Продолжение таблицы 2

1	2	3	4	5	6	7
33	ПС 40А 150/35/6 кВ 3РУ-6 кВ яч. № 28 «ДГР-3»	ТЛМ-10 Кл. т. 0,5 100/5 Зав. № 1264 Зав. № 1300 Госреестр № 2473-69	НТМИ-6-66 Кл.т. 0,5 6000/100 Зав. № 7683 Госреестр № 2611-70	A1805RALQ- P4GB- DW4 Кл. т. 0,5S/1,0 Зав. № 01267938 Госреестр № 31857-11	рский ГОК»	Активная Реактив- ная
34	ПС 40А 150/35/6 кВ 3РУ-6 кВ яч. № 56 «ДГР-1»	ТЛМ-10 Кл. т. 0,5 100/5 Зав. № 1277 Зав. № 1266 Госреестр № 2473-69	НТМИ-6-66 Кл.т. 0,5 6000/100 Зав. № 6297 Госреестр № 2611-70	A1805RALQ- P4GB- DW4 Кл. т. 0,5S/1,0 Зав. № 01267936 Госреестр № 31857-11	ИВК АИИС КУЭ ОАО «Ковдорский ГОК»	Активная Реактив- ная
35	ПС 40А 150/35/6 кВ 3РУ-6 кВ яч. № 59 «ДГР-4»	ТЛМ-10 Кл. т. 0,5 100/5 Зав. № 1282 Зав. № 1280 Госреестр № 2473-69	НТМИ-6-66 Кл.т. 0,5 6000/100 Зав. № 7684 Госреестр № 2611-70	A1805RALQ- P4GB- DW4 Кл. т. 0,5S/1,0 Зав. № 01267939 Госреестр № 31857-11	ИВК АИИС	Активная Реактив- ная

Таблица 3

		Пределы допускаемой относительной погрешности ИИК при измерении ак-				
Номер канала	cosφ	тивной электрической энергии в рабочих условиях эксплуатации δ, %				
		$I_{5\%} \le I_{_{H3M}} < I_{_{20\%}}$	$I_{20\%} \le I_{M3M} < I_{100\%}$	I_{100} % \leq $I_{изм}$ \leq I_{120} %		
32 – 35	1,0	±2,0	±1,4	±1,2		
TT-0,5; TH-0,5;	0,9	±2,9	±1,9	±1,7		
ТТ-0,5, ТП-0,5, Счетчик -0,5S	0,8	±3,3	±2,1	±1,8		
Счетчик -0,33	0,5	±5,6	±3,2	±2,6		
		Пределы допускаемой относительной погрешности ИИК при измерении ре-				
Номер канала	cosφ	активной электрической энергии в рабочих условиях эксплуатации δ, %				
		$_{1_5\%} \leq$ $_{1_{13M}} <$ $_{1_{20\%}}$	$I_{20\%} \le I_{M3M} < I_{100\%}$	$I_{100\%} \le I_{_{13M}} \le I_{120\%}$		
32 - 35	0,9	±6,1	±3,4	±2,7		
TT-0,5; TH-0,5;	0,8	±5,1	±2,9	±2,4		
Счетчик -1,0	0,5	±3,4	±2,2	±2,0		

Ход часов компонентов ИИК не превышает ±5 с/сут.

Примечания:

- 1. Погрешность измерений $\delta_{1(2)\%P}$ и $\delta_{1(2)\%Q}$ для $\cos \phi = 1,0$ нормируется от $I_{1\%}$, а погрешность измерений $\delta_{1(2)\%P}$ и $\delta_{1(2)\%Q}$ для $\cos \phi < 1,0$ нормируется от $I_{2\%}$.
- 2. Характеристики относительной погрешности ИИК даны для измерения электроэнергии и средней мощности (30 мин.).
- 3. В качестве характеристик относительной погрешности указаны границы интервала, соответствующие вероятности 0,95.
- 4. Нормальные условия эксплуатации компонентов ИИК:
 - напряжение от 0,98·Uном до 1,02·Uном;
 - − сила тока от 1·Іном до 1,2·Іном, $\cos φ$ =0,9 инд;
 - температура окружающей среды: (20 ± 5) °C.
- 5. Рабочие условия эксплуатации компонентов ИИК:
 - напряжение питающей сети от 0,9 Uном до 1,1 · Uном;
 - сила тока от 0,05 $I_{\text{ном}}$ до 1,2 $I_{\text{ном}}$;

температура окружающей среды:

- для счетчиков электроэнергии от плюс 15 до плюс 35 °C;
- для трансформаторов тока по ГОСТ 7746-2001;
- для трансформаторов напряжения по ГОСТ 1983-2001.
- 6. Трансформаторы тока по ГОСТ 7746-2001, трансформаторы напряжения по ГОСТ 1983-2001, счетчики по ГОСТ Р 52323-2005 в режиме измерения активной электроэнергии и ГОСТ 26035-83, ГОСТ 52425-2005 в режиме измерения реактивной электроэнергии.
- 7. Допускается замена измерительных трансформаторов и счетчиков электроэнергии на аналогичные (см. п. 6 Примечания) утвержденных типов с метрологическими характеристиками не хуже, чем у перечисленных в Таблице 2. Замена оформляется актом в установленном на объекте порядке. Акт хранится совместно с настоящим описанием типа ИИК как его неотъемлемая часть.

Параметры надежности применяемых в ИИК измерительных компонентов:

- счетчик электроэнергии Альфа A1800- среднее время наработки на отказ не менее 120000 часов;
- УСПД RTU 327 среднее время наработки на отказ не менее 100000 часов.

Среднее время восстановления, при выходе из строя оборудования:

- для счетчика Тв ≤ 2 часа;
- для УСПД Тв ≤ 2 часа;
- для сервера Тв ≤ 1 час;
- для компьютера APM Тв ≤ 1 час;
- для модема Тв ≤ 1 час.

Защита технических и программных средств ИИК от несанкционированного доступа:

- клеммники вторичных цепей измерительных трансформаторов имеют устройства для пломбирования;
- панели подключения к электрическим интерфейсам счетчиков защищены механическими пломбами;
- наличие защиты на программном уровне возможность установки многоуровневых паролей на счетчиках, УСПД, сервере, APM;
- организация доступа к информации ИВК посредством паролей обеспечивает идентификацию пользователей и эксплуатационного персонала;
- защита результатов измерений при передаче.

Наличие фиксации в журнале событий счетчика следующих событий

- фактов параметрирования счетчика;
- фактов пропадания напряжения;
- фактов коррекции времени.
 - Возможность коррекции времени в:
- счетчиках (функция автоматизирована);
- УСПД (функция автоматизирована);
- сервере (функция автоматизирована).

Глубина хранения информации:

- счетчик электроэнергии тридцатиминутный профиль нагрузки в двух направлениях не менее 113,7 суток; при отключении питания – не менее 10 лет;
- счетчик электроэнергии Альфа A1800 тридцатиминутный профиль нагрузки в двух направлениях не менее 172 суток; при отключении питания не менее 10 лет;
- УСПД суточные данные о тридцатиминутных приращениях электроэнергии по каждому каналу и электроэнергии потребленной за месяц по каждому каналу не менее 45 суток; при отключении питания не менее 5 лет;
- ИВК хранение результатов измерений и информации о состоянии средств измерений не менее 3.5 лет.

Знак утверждения типа

Знак утверждения типа наносится на титульные листы эксплуатационной документации ИИК типографским способом.

Комплектность средств измерений

Комплектность ИИК приведена в таблице 4

Таблина 4

Наименование	Тип	Количество, шт.
Трансформатор тока	ТЛМ-10	8
Трансформатор напряжения	НТМИ-6-66	4
Счётчик электрической энергии	A1805RALQ-P4GB-DW-4	4
Устройство сбора и передачи данных	RTU-327L	1
Модем SHDSL	FG-PAM-SAN-Eth	2
Коммутатор 6x10/100BaseTX, 2x100 BaseFX	EDS-308-SS-SC	1
Концентратор Ethernet	EDS-305	1
Медиа-конвертер Ethernet10/100BaseTX в	IMC-21-S-SC	1
100BaseFX		
Преобразователь4xRS-485/ Ethernet	NPort5430i	1
Блок коррекции времени	ЭНКС-2.1.1.1	1
Сервер баз данных	IBM x 3650 M3	1
Методика поверки	MΠ 1819/550-2014	1
Паспорт – формуляр	ТСАС.114217714.009.ПС	1
Специализированное программное обеспечение	ПО «Альфа-Центр»	1

Поверка

осуществляется по документу МП 1819/550-2014 «ГСИ. Каналы измерительно – информационные системы автоматизированной информационно-измерительной коммерческого учета электроэнергии (АИИС КУЭ) ОАО «Ковдорский ГОК». Методика поверки», утвержденному ГЦИ СИ ФГУ «Ростест-Москва» в марте 2014 г.

Основные средства поверки:

- –для трансформаторов тока по ГОСТ 8.217-2003;
- –для трансформаторов напряжения по ГОСТ 8.216-2011;
- -для счётчиков Альфа A1800 по документу "Счетчики электрической энергии трехфазные многофункциональные Альфа A1800. Методика поверки ДЯИМ.411152.018 МП", утвержденному ГЦИ СИ ФГУП "ВНИИМС" в 2011 г.;
- –УСПД RTU-327 по методике поверки ДЯИМ.466215.007 МП, утвержденной ГЦИ СИ ФГУП «ВНИИМ им. Д.И. Менделеева» в 2009 г.;

Радиочасы МИР РЧ-01, принимающие сигналы спутниковой навигационной системы Global Positioning System (GPS). (Госреестр № 27008-04);

Переносной компьютер с ПО и оптический преобразователь для работы со счетчиками системы, ПО для работы с радиочасами МИР РЧ-01;

Термометр по ГОСТ 28498-90, диапазон измерений от минус 40 до плюс 50° С, цена деления 1° С.

Сведения о методиках (методах) измерений

Метод измерений изложен в документе: «Методика (методы) измерений количества электрической энергии с использованием каналов измерительно – информационных системы автоматизированной информационно-измерительной коммерческого учета электроэнергии

(АИИС КУЭ) ОАО «Ковдорский ГОК»». Свидетельство об аттестации методики (метода) измерений № 1355/550-01.00229-2014 от 20.03.2014 г.

Нормативные документы, устанавливающие требования к каналам измерительно – информационным системы автоматизированной информационно-измерительной коммерческого учета электроэнергии (АИИС КУЭ) ОАО «Ковдорский ГОК»

- 1 ГОСТ Р 8.596-2002 ГСИ. Метрологическое обеспечение измерительных систем. Основные положения.
- 2 ГОСТ 22261-94 Средства измерений электрических и магнитных величин. Общие технические условия.
- 3 ГОСТ 34.601-90 Информационная технология. Комплекс стандартов на автоматизированные системы. Автоматизированные системы. Стадии создания.
 - 4 ГОСТ 7746-2001 Трансформаторы тока. Общие технические условия.
 - 5 ГОСТ 1983-2001 Трансформаторы напряжения. Общие технические условия.
- 6 ГОСТ 31819.22-2012 Аппаратура для измерения электрической энергии переменного тока. Частные требования. Часть 22. Статические счетчики активной энергии классов точности 0,2S и 0,5S.
- 7 ГОСТ 31819.23-2012 Аппаратура для измерения электрической энергии переменного тока. Частные требования. Часть 23. Статические счетчики реактивной энергии.

Рекомендации по областям применения в сфере государственного регулирования обеспечения единства измерений

- при осуществлении торговли и товарообменных операций.

Изготовитель

ОАО «Ковдорский ГОК»

184141, Мурманская область, г. Ковдор, ул. Сухачева, д. 5

Телефон: 8 (815-35) 760-20 Факс: 8 (815-35) 760-01

Заявитель

ООО «ТехноСерв АС»

Адрес (юридический): 109052, г. Москва, ул. Смирновская, д. 10, стр. 3.

Адрес (почтовый): 400081, г. Волгоград, ул. Ангарская, д. 15 Г, офис 4-9.

Телефон: 8(8442) 494-969 Факс: 8(8442) 494-978

Испытательный центр

Федеральное бюджетное учреждение «Государственный региональный центр стандартизации, метрологии и испытаний в г. Москве» (ФБУ «Ростест-Москва»).

117418 г. Москва, Нахимовский проспект, 31

Тел.(495) 544-00-00, 668-27-40, (499) 129-19-11 Факс (499) 124-99-96

Аттестат аккредитации ГЦИ СИ ФБУ «Ростест-Москва» по проведению испытаний средств измерений в целях утверждения типа № 30010-10 от 15.03.2010 г.

Заместитель
Руководителя Федерального агент-
ства по техническому регулирова-
нию и метрологии

Δ.	D	Γ
W)	к	ьупыгин

1 (2014
М.п.	//	\\	2014 г.
IVI.II.	"	//	201 1 1.