ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Газоанализаторы модели GFC-7000, GFC-7001, GFC-7002, LGA-4000, 6400, 7300, 7320, 7500, 7600

Назначение средства измерений

Газоанализаторы модели GFC-7000, GFC-7001, GFC-7002, LGA-4000, 6400, 7300, 7320, 7500, 7600 (далее – газоанализаторы) предназначены для автоматического непрерывного измерения объемной доли или массовой концентрации кислорода, оксида и диоксида углерода, диоксида серы, оксида и диоксида азота, закиси азота, аммиака, сероводорода, цианистого водорода, паров воды, метана, этана, пропана, бутана, пентана, этилена, пропена, ацетилена, хлороводорода, фтороводорода и гексафторида серы.

Описание средства измерений

Газоанализаторы модели GFC-7000, GFC-7001, GFC-7002, LGA-4000, 6400, 7300, 7320, 7500, 7600 представляют собой промышленные стационарные автоматические приборы непрерывного действия.

В газоанализаторах модели GFC-7000, GFC-7001, GFC-7002, 6400, 7300, 7320, 7500, 7600 при измерении объемной доли (массовой концентрации) кислорода используются парамагнитные, электрохимические или циркониевые датчики; для измерения объемной доли (массовой концентрации) прочих компонентов применен фотометрический метод, основанный на избирательном поглощении инфракрасного, видимого или ультрафиолетового излучения молекулами определяемого компонента.

Используемый принцип измерений в газоанализаторах модели LGA-4000 — спектроскопия однолинейного молекулярного излучения. Диодный лазер излучает луч света, проходящий через анализируемую среду и детектируемый модулем приемника. Длина волны лазерного луча настраивается на характерную линию поглощения определяемого компонента.

Газоанализаторы модели LGA-4000 состоят из блоков излучателя и приемника, устанавливаемых на фланцы трубопровода, в котором производят измерения. Максимальная длина оптического пути $-15\,\mathrm{m}$.

Газоанализаторы 7320 устанавливаются во взрывозащищенную оболочку типа Ex-d. Монтаж газоанализаторов 7320 производится на стену.

В названии газоанализаторов модели GFC-7000, GFC-7001, GFC-7002, 6400, 7300, 7500, 7600 в зависимости от исполнения наносят буквенный код модификации:

- А компактное модульное исполнение для панельного монтажа;
- Е стандартное модульное исполнение для панельного монтажа;
- B настенный монтаж в корпусе NEMA 4 с возможностью взрывозащищенного исполнения;
- Т модульное исполнение для панельного монтажа со встроенным цветным сенсорным дисплеем и возможностью хранения данных измерений на внутреннем накопителе памяти;
- H стандартное модульное исполнение для панельного монтажас использованием химически стойких материалов и детекторов, предназначенных для измерений больших концентрации.

Газоанализаторы модели 7600 могут измерять до 5 компонентов одновременно; модели 7500- до 4 компонентов; 6400, 7300, 7320, GFC-7000, GFC-7001, GFC-7002 — один компонент.

На лицевой панели газоанализаторов расположены клавиши управления и дисплей, на котором отображаются результаты измерений.

Газоанализаторы имеют унифицированные аналоговые выходные сигналы по току (4-20) мА и (или) по напряжению (0-1) В, а так же цифровой выход RS-232.

Газоанализаторы модели 7300, 7320, 7500, 7600 могут быть выполнены во взрывозащищенном исполнении с маркировками взрывозащиты 1ЕхрхІІСТ6 (для 7300, 7500, 7600) и 1ExdIIB+H₂ T5/T6 (для 7320).

Рис. 1. Общий вид газоанализаторов модели GFC-7000T, GFC-7001T, GFC-7002T, 6400T.

Рис. 2. Общий вид газоанализаторов модели GFC-7000E, GFC-7001E, GFC-7002E, 6400E, 6400EH.

Рис.3. Общий вид газоанализаторов модели LGA-4000.

Рис. 4. Общий вид газоанализаторов модели Рис. 5. Общий вид газоанализаторов модели 7300A.

7300B.

Рис. 6. Общий вид газоанализаторов модели 7320.

Рис. 7. Общий вид газоанализаторов модели 7500A, 7600A.

Рис. 8. Общий вид газоанализаторов модели 7500B, 7600B.

Рис. 9. Общий вид газоанализаторов модели 7500E, 7600E.

Программное обеспечение

Идентификационные данные программного обеспечения приведены в таблице 1. Таблица 1

Наименование	Идентифика-	Номер версии	Цифровой иденти-	Алгоритм вы-
программного	ционное наиме-	(идентифика-	фикатор про-	числения циф-
обеспечения	нование про-	ционный но-	граммного обеспе-	рового иденти-
	граммного обес-	мер) про-	чения (контроль-	фикатора про-
	печения	граммного	ная сумма испол-	граммного обес-
		обеспечения	няемого кода)	печения
TAI OS	недоступно	не ниже 1.03	недоступно	

Уровень защиты по МИ 3286-2010 – «А». Не требуется специальных средств защиты, исключающих возможность несанкционированной модификации, обновления (загрузки), удаления и иных преднамеренных изменений метрологически значимой встроенной части ПО СИ и измеренных данных.

Влияние программного обеспечения газоанализаторов учтено при нормировании метрологических характеристик.

Метрологические и технические характеристики Диапазоны измерений и пределы допускаемых значений основной погрешности газоанализаторов модели 7300, 7320, 7500, 7600, LGA-4000 приведены в таблице 2.

Таблица 2

Анализируемый	Диапазон измерений (минималь-	Диапазон измерений ¹⁾ (минималь-	Пределы допускаемых значений ос-
компонент	ный/максимальный), объемная доля	ный/максимальный), массовая концен- новной приведенной погреш	
		трация	
		7320, 7500, 7600, LGA-4000	
CO	от 0 до 10 млн $^{-1}$ / от 0 до 35 млн $^{-1}$	от 0 до 12 мг/м 3 / от 0 до 41 мг/м 3	± 12
	от 0 до 36 млн ⁻¹ / от 0 до 2999 млн ⁻¹	от 0 до 42 мг/м 3 / от 0 до 3494 мг/м 3	± 5
	от 0 до 0,3 % / от 0 до 0,99 %	от 0 до 3495 мг/м 3 / от 0 до 11531 мг/м 3	± 4
	от 0 до 1,0 % / от 0 до 1,5 %		± 3
	от 0 до 1,6 % / от 0 до 100 %		± 2
CO_2	от 0 до 10 млн $^{-1}$ / от 0 до 119 млн $^{-1}$	от 0 до 19 мг/м 3 / от 0 до 218 мг/м 3	± 12
	от 0 до 120 млн ⁻¹ / от 0 до 699 млн ⁻¹	от 0 до 219 мг/м 3 / от 0 до 1280 мг/м 3	± 10
	от 0 до 700 млн ⁻¹ / от 0 до 2499 млн ⁻¹	от 0 до 1281 мг/м^3 / от 0 до 4574 мг/м^3	± 8
	от 0 до 2500 млн ⁻¹ / от 0 до 9 999 млн ⁻¹	от 0 до 4575 мг/м 3 / от 0 до 18302 мг/м 3	± 4
	от 0 до 1,0 % / от 0 до 100 %		± 2
NH ₃	от 0 до 5 млн ⁻¹ / от 0 до 9 млн ⁻¹	от 0 до 4 мг/м 3 / от 0 до 7 мг/м 3	± 20
	от 0 до 10 млн ⁻¹ / от 0 до 4,9 %	от 0 до 8 мг/м 3 / от 0 до 700 мг/м 3	± 10
	от 0 до 5 % / от 0 до 9,9 %		± 12
	от 0 до 10 % / от 0 до 50 %		± 8
CH ₄	от 0 до 100 млн ⁻¹ / от 0 до 249 млн ⁻¹	от 0 до 67 мг/м 3 / от 0 до 166 мг/м 3	±7
	от 0 до 250 млн ⁻¹ / от 0 до 2999 млн ⁻¹	от 0 до 167 мг/м 3 от 0 до 1997 мг/м 3	± 5
	от 0 до 3000 млн ⁻¹ / от 0 до 6999 млн ⁻¹	от 0 до 1998 мг/м^3 / от 0 до 4659 мг/м^3	± 4
	от 0 до 0,7 % / от 0 до 100 %	от 0 до 4660 мг/м 3 / от 0 до 6700 мг/м 3	± 2
C_2H_4	от 0 до 60 млн ⁻¹ / от 0 до 4999 млн ⁻¹	от 0 до 70 мг/м 3 / от 0 до 5823 мг/м 3	± 10
	от 0 до 0,5 % / от 0 до 9,9 %	от 0 до 5824 мг/м^3 / от 0 до 11700 мг/м^3	± 6
	от 0 до 10 % / от 0 до 100 %		± 2
C_2H_2	от 0 до 10 млн ⁻¹ / от 0 до 499 млн ⁻¹	от 0 до 11 мг/м 3 / от 0 до 540 мг/м 3	± 20
	от 0 до 0,05 % / от 0 до 20 %	от 0 до 541 мг/м^3 / от 0 до 10800 мг/м^3	± 8

Анализируемый компонент	Диапазон измерений (минималь- ный/максимальный), объемная доля	Диапазон измерений (минимальный/максимальный), массовая концен-	Пределы допускаемых значений основной приведенной погрешности, %
		трация	
HC1	от 0 до 5 млн ⁻¹ / от 0 до 50 млн ⁻¹	от 0 до 8 мг/м 3 / от 0 до 76 мг/м 3	± 20
	от 0 до 50 млн ⁻¹ / от 0 до 8000 млн ⁻¹	от 0 до 77 мг/м 3 / от 0 до 12146 мг/м 3	± 12
O_2	от 0 до 10 млн ⁻¹ / от 0 до 9999 млн ⁻¹	от 0 до 14 мг/м 3 / от 0 до 13310 мг/м 3	± 10
	от 0 до 1,0 %/ от 0 до 2,4 %		± 8
	от 0 до 2,5 % / от 0 до 14,9 %		± 3
	от 0 до 15 % / от 0 до 100 %		± 2
		LGA-4000	
H_2S	от 0 до 20 млн ⁻¹ / от 0 до 4999 млн ⁻¹	от 0 до 28 мг/м 3 / от 0 до 6966 мг/м 3	± 10
	от 0 до 0,5 % / от 0 до 10,0 %	от 0 до 6967 мг/м 3 / от 0 до 13930 мг/м 3	± 5
HF	от 0 до 10 млн ⁻¹ / от 0 до 100 млн ⁻¹	от 0 до 9 мг/м 3 / от 0 до 84 мг/м 3	± 25
HCN	от 0 до 10 млн $^{-1}$ /от 0 до 500 млн $^{-1}$	от 0 до 11 мг/м 3 /от 0 до 561 мг/м 3	± 12
H ₂ O	от 0 до 10 млн ⁻¹ / от 0 до 1999 млн ⁻¹	от 0 до 8 мг/м 3 / от 0 до 1496 мг/м 3	± 10
	от 0 до 0,2 % / от 0 до 60 %	от 0 до 1497 мг/м^3 / от 0 до 7490 мг/м^3	± 5
		7300, 7320, 7500, 7600	
NO	от 0 до 10 млн ⁻¹ / от 0 до 39 млн ⁻¹	от 0 до 13 мг/м 3 / от 0 до 48 мг/м 3	± 14
	от 0 до 40 млн $^{-1}$ / от 0 до 4999 млн $^{-1}$	от 0 до 49 мг/м 3 / от 0 до 6239 мг/м 3	± 10
	от 0 до 0,5 %/ от 0 до 10 %	от 0 до 6240 мг/м 3 / от 0 до 12500 мг/м 3	± 5
NO_2	от 0 до 5 млн ⁻¹ / от 0 до 39 млн ⁻¹	от 0 до 10 мг/м 3 / от 0 до 75 мг/м 3	± 14
	от 0 до 40 млн ⁻¹ / от 0 до 4999 млн ⁻¹	от 0 до 76 мг/м 3 / от 0 до 9566 мг/м 3	± 10
	от 0 св. 0,5 % / от 0 до 3 %	от 0 до 9567 мг/м 3 / от 0 до 19135 мг/м 3	± 5
SO_2	от 0 до 10 млн ⁻¹ / от 0 до 19 млн ⁻¹	от 0 до 27 мг/м 3 / от 0 до 50 мг/м 3	± 14
	от 0 до 20 млн ⁻¹ / от 0 до 4999 млн ⁻¹	от 0 до 51 мг/м 3 / от 0 до 13309 мг/м 3	± 8
	от 0 до 0,5 % / от 0 до 20 %	от 0 до 13310 мг/м 3 / от 0 до 26700 мг/м 3	± 5
N ₂ O	от 0 до 100 млн ⁻¹ / от 0 до 4999 млн ⁻¹	от 0 до 184 мг/м 3 / от 0 до 9150 мг/м 3	± 12
	от 0 до 0,5 % / от 0 до 19 %	от 0 до 9151 мг/м 3 / от 0 до 18400 мг/м 3	± 10
	от 0 до 20 % / от 0 до 79 %		± 8
	от 0 до 80 % / от 0 до 100 %		± 5
C_3H_8	от 0 до 60 млн ⁻¹ / от 0 до 999 млн ⁻¹	от 0 до 110 мг/м 3 / от 0 до 1829 мг/м 3	± 8
-	от 0 до 1000 млн ⁻¹ / от 0 до 2399 млн ⁻¹	от 0 до 1830 мг/м 3 / от 0 до 4391 мг/м 3	± 5

Анализируемый	Диапазон измерений (минималь-	Диапазон измерений ¹⁾ (минималь-	Пределы допускаемых значений ос-
компонент	ный/максимальный), объемная доля	ный/максимальный), массовая концен-	новной приведенной погрешности, %
		трация	
C_3H_8	от 0 до 2400 млн $^{-1}$ / от 0 до 3499 млн $^{-1}$	от 0 до 4392 мг/м 3 / от 0 до 6404 мг/м 3	± 8
	от 0 до 3500 млн^{-1} / от 0 до $11 999 \text{ млн}^{-1}$	от 0 до 6405 мг/м 3 / от 0 до 18300 мг/м 3	± 5
	от 0 до 1,2 % / от 0 до 5 %		± 12
C_2H_6	от 0 до 50 млн ⁻¹ / от 0 до 4999 млн ⁻¹	от 0 до 63 мг/м 3 / от 0 до 6147 мг/м 3	± 9
	от 0 до 0,5 % / от 0 до 9,9 %	от 0 до 6148 мг/м 3 / от 0 до 12300 мг/м 3	±7
	от 0 до 10 % / от 0 до 100 %		±3
C_4H_{10}	от 0 до 500 млн $^{-1}$ / от 0 до 4999 млн $^{-1}$	от 0 до 1207 мг/м 3 / от 0 до 12061 мг/м 3	± 12
	от 0 до 0,5 % / от 0 до 15 %	от 0 до 12062 мг/м 3 / от 0 до 24126 мг/м 3	± 4
C_5H_{12}	от 0 до 100 млн $^{-1}$ / от 0 до 7500 млн $^{-1}$	от 0 до 300 мг/м^3 / от 0 до 22462 мг/м^3	± 12
C_3H_6	от 0 до 500 млн $^{-1}$ / от 0 до 4999 млн $^{-1}$	от 0 до 874 мг/м^3 / от 0 до 8734 мг/м^3	± 12
	от 0 до 0,5 % / от 0 до 10 %	от 0 до 8735 мг/м 3 / от 0 до 17470 мг/м 3	± 10
	от 0 до 10 % / от 0 до 20 %		± 3
SF ₆	от 0 до 100 млн $^{-1}$ / от 0 до 500 млн $^{-1}$	от 0 до 608 мг/м 3 / от 0 до 3036 мг/м 3	± 15

^{1).} для условий 20 °C и 760 мм рт.ст.

Диапазоны измерений и пределы допускаемых значений основной погрешности газоанализаторов модели GFC-7000, GFC-7001, GFC-7002, 6400 приведены в таблице 3.

Таблица 3

Диапазон измере-	Диапазон измерений	Пределы до-	Пределы до-
*	(минимальный / макси-	пускаемых	пускаемых
максимальный),			значений ос-
объемная доля	концентрация, мг/м3		новной при-
			веденной по-
		грешности, %	грешности, %
· ·			± 20
	св. 1,4 до 133 мг/м ³	± 20	
св. 50 до 5000 млн ⁻¹	св. 133 до 13311 мг/м ³	± 8	
	GFC-7000		
от 0 до 10 млн ⁻¹	от 0 до 19 мг/м ³		± 12
св. 10 до 119 млн ⁻¹	св. 19 до 218 мг/м ³	± 12	
св. 119 до 699 млн ⁻¹	св. 218 до 1280 мг/м ³	± 10	
св. 699 до 1000 млн ⁻¹	св. 1280 до 1830 мг/м ³	± 8	
	GFC-7001		
от 0 до 2,0 млн ⁻¹	от 0 до 2,4 мг/м ³		± 20
св. 2,0 до 50 млн ⁻¹	св. 2,4 до 59 мг/м ³	± 20	
св. 50 до 2999 млн ⁻¹	св. 59 до 3494 мг/м ³	± 5	
св. 0,3 до 0,99 %	св. 3494 до 11531 мг/м ³	±4	
св. 0,99 % до 1,5 %		±3	
GFC-7002			
от 0 до 10 млн ⁻¹	от 0 до 19 мг/м ³		± 20
	св. 19 до 90 мг/м ³	± 20	
св. 49 до 1000 млн ⁻¹	св. 90 до 1830 мг/м ³	± 12	
	ний (минимальный / максимальный), объемная доля от 0 до 0,5 млн ⁻¹ св. 0,5 до 50 млн ⁻¹ св. 50 до 5000 млн ⁻¹ св. 10 до 119 млн ⁻¹ св. 119 до 699 млн ⁻¹ св. 699 до 1000 млн ⁻¹ от 0 до 2,0 млн ⁻¹ св. 2,0 до 50 млн ⁻¹ св. 50 до 2999 млн ⁻¹ св. 0,3 до 0,99 % св. 0,99 % до 1,5 % от 0 до 10 млн ⁻¹ св. 10 до 49 млн ⁻¹	ний (минимальный / максимальный / максимальный), объемная доля ———————————————————————————————————	ний (минимальный / максимальный / максимальный), массовая концентрация, мг/м³ значений основной относительной погрешности, % от 0 до 0,5 млн⁻¹ св. 1,4 до 133 мг/м³ ± 20 св. 50 до 5000 млн⁻¹ св. 133 до 13311 мг/м³ ± 8 св. 10 до 119 млн⁻¹ св. 19 до 218 мг/м³ ± 10 св. 699 до 1000 млн⁻¹ св. 1280 до 1830 мг/м³ ± 8 ся сто 0 до 2,0 млн⁻¹ св. 2,4 до 59 мг/м³ ± 10 св. 699 до 1000 млн⁻¹ св. 2,4 до 59 мг/м³ ± 20 св. 50 до 2999 млн⁻¹ св. 2,4 до 59 мг/м³ ± 10 св. 50 до 2000 млн⁻¹ св. 2,4 до 59 мг/м³ ± 20 св. 50 до 2999 млн⁻¹ св. 3494 до 11531 мг/м³ ± 5 св. 0,3 до 0,99 % св. 3494 до 11531 мг/м³ ± 3 св. 0,99 % до 1,5 % св. 19 до 90 мг/м³ ± 3 св. 10 до 49 млн⁻¹ св. 19 до 90 мг/м³ ± 3 св. 10 до 49 млн⁻¹ св. 19 до 90 мг/м³ ± 20 св. 10 до 49 млн⁻¹ св. 19 до 90 мг/м³ ± 3 св. 10 до 49 млн⁻¹ св. 19 до 90 мг/м³ ± 20 св. 10 до 49 млн⁻¹ св. 19 до 90 мг/м³ ± 20 св. 10 до 49 млн⁻¹ св. 19 до 90 мг/м³ ± 20 св. 10 до 49 млн⁻¹ св. 19 до 90 мг/м³ ± 20 св. 10 до 49 млн⁻¹ св. 19 до 90 мг/м³ ± 20 св. 10 до 49 млн⁻¹ св. 19 до 90 мг/м³ ± 20 св. 10 до 49 млн⁻¹ св. 19 до 90 мг/м³ ± 20 св. 10 до 49 млн⁻¹ св. 19 до 90 мг/м³ ± 20 св. 10 до 49 млн⁻¹ св. 19 до 90 мг/м³ ± 20 св. 10 до 49 млн⁻¹ св. 19 до 90 мг/м³ ± 20 св. 10 до 49 млн⁻¹ св. 19 до 90 мг/м³ ± 20 св. 10 до 49 млн⁻¹ св. 19 до 90 мг/м³ ± 20 св. 10 до 49 млн⁻¹ св. 19 до 90 мг/м³ ± 20 св. 10 до 49 млн⁻¹ св. 19 до 90 мг/м³ ± 20 св. 10 до 49 млн⁻¹ св. 19 до 90 мг/м³ ± 20 св. 10 до 49 млн⁻¹ св. 19 до 90 мг/м³ ± 20 св. 10 до 49 млн⁻¹ св. 19 до 90 мг/м³ ± 20 св. 10 до 49 млн⁻¹ св. 19 до 90 мг/м³ ± 20 св. 10 до 49 млн⁻¹ св. 19 до 90 мг/м³ ± 20 св. 10 до 40 млн⁻¹ св. 19 до 90 мг/м³ ± 20 св. 10 до 40 млн⁻¹ св. 19 до 90 мг/м³ ± 20 св. 10 до 40 млн⁻¹ св. 19 до 90 мг/м³ ± 20 св. 10 до 40 млн⁻¹ св. 10 до 40 млн⁻¹ св. 10 до 40 млн⁻¹ св. 10 до 90 мг/м³ ± 20 св. 10 до 40 млн⁻¹ св. 10 до 40 млн⁻² св. 10 до 40 млнсти млн тители пото 10 до 40 млнсти пото 10 до 40

Пределы дополнительной погрешности от изменения температуры окру-	
жающей среды на каждые 10^{0} С, доля основной погрешности	$\pm 0,3$
Время прогрева газоанализаторов модели GFC-7000, GFC-7001, GFC-7002,	60
LGA-4000, 6400, 7300, 7320, мин, не более	
Время прогрева газоанализаторов модели 7500, 7600, мин, не более	15
Время установления показаний $T_{0,9}$, с, не более:	
модели LGA-4000	1
модели 6400, 7500, 7600, 7300, 7320	5
модели GFC-7000, GFC-7001, GFC-7002	10

Потребляемая мощность, габаритные размеры и масса газоанализаторов приведены в таблице 4.

Таблица 4

1			
Модель газоанализа-	Потребляемая мощ-	Габаритные размеры,	Масса, кг, не бо-
тора	ность, Вт, не более	мм, не более	лее
GFC-7000E	150	178 x 432 x 635	18,2
GFC-7001E	150	178 x 432 x 635	18,2
GFC-7002E	150	178 x 432 x 635	18,2

Модель газоанализа-	Потребляемая мощ-	Габаритные размеры,	Масса, кг, не бо-
тора	ность, Вт, не более	мм, не более	лее
LGA-4000	20	755 x 188 x 288 – блок излучателя 829 x 188 x 288 – блок приемника	по 10 – блоки излучателя и приемника
7300A	100	188 x 270 x 344	12
7320	100	388 x 651 x 280	41
7500E	170	177 x 483 x 493	12
7500B	170	600 x 880 x 265	32
7600E	170	177 x 483 x 493	12
7600B	170	600 x 880 x 265	32
6400E	250	178 x 432 x 597	16

Условия эксплуатации:

- температура окружающей среды, °C модели GFC-7000, GFC-7001, GFC-7002 модели 6400, 7300, 7320, 7500, 7600 модели LGA-4000

- относительная влажность

от 5 до 40 от 5 до 45 от минус 30 до плюс 60 не более 90 % (без конденсации влаги)

- напряжение питания, В модель LGA-4000 модели GFC-7000, GFC-7001, GFC-7002, LGA-4000, 6400, 7300, 7320, 7500, 7600

110 - 220

24 пост. ток или 220

- частота, Гц

50

Знак утверждения типа

наносится на анализаторы способом наклейки и титульный лист руководства по эксплуатации типографским способом.

Комплектность средства измерений

 Γ азоанализатор — 1 экз.;

Комплект ЗИП – 1 компл.:

Руководство по эксплуатации – 1 экз.;

Методика поверки –1 экз.

Поверка

осуществляется по документу МП 57465-14 "Инструкция. Газоанализаторы модели GFC-7000, GFC-7001, GFC-7002, LGA-4000, 6400, 7300, 7320, 7500, 7600. Методика поверки", разработанному и утвержденному ФГУП "ВНИИМС" "31" января 2014 г. и входящему в комплект поставки

Основные средства поверки:

- ΓCO-ΠΓC 3799-87, 3802-87, 3808-87, 3810-87, 3814-87, 3816-87, 3819-87, 9744-2011, 9745-2011, 9761-2011 (CO - a3ot), 3744-87, 3745-87, 3760-87, 3787-87, 9737-2011, 9738-2011, 9741-2011, 9783-2011, 9784-2011, 9785-2011, 9786-2011 (CO₂ - a3ot), 9160-2008, 9201-2008, 9202-2008 (NH₃ - a3ot), 3858-87, 3862-87, 3865-87, 3868-87, 3872-87, 3885-87, 3890-87, 3894-87, 9747-2011, 9748-2011, 9749-2011, 9750-2011 (CH₄ - a3ot), 9193-2008, 8987-2008, 9221-2008 (C₂H₄ - a3ot), 9133-2008, 9134-2008, 9864-2011, 10379-2013 (C₂H₂ - a3ot), 9257-2011, 9858-2011, 10371-2013 (HCl - a3ot), 3713-87, 3717-87, 3720-87, 3722-87, 3726-87, 3732-87 (O₂

- азот), 9170-2008, 9182-2008 (H_2S- азот), 10158-2012 (HCN - азот), 9189-2008, 9190-2008 (NO - азот), 9187-2008, 9188-2008(NO $_2-$ азот), 9195-2008, 9196-2008, 9197-2008 (SO $_2-$ азот), 9207-2008 (N_2O- азот), 9305-2009, 9536-2010 (N_2O- воздух), 5324-90, 9767-2011, 9778-2011, 9779-2011, 9780-2011 (C_3H_8- азот), 9204-2008, 9205-2008 (C_2H_6- азот), 8977-2008, 8978-2008 ($C_4H_{10}-$ азот), 8981-2008 ($C_5H_{12}-$ азот), 8975-2008, 8976-2008, 10249-2013 (C_3H_6- азот), 10162-2012 (SF $_6-$ азот);

- смесь газовая поверочная ЭМ ВНИИМ 06.01.920 (SF₆ азот), по ТУ 6-16-2956-01;
- установка "Микрогаз-Ф" по ТУ 4215-004-07518800-02 в комплекте с источниками микропотока по ТУ ИБЯЛ.418319.013-95;
 - генератор газовых смесей ГГС-03-03 ШДЕК.418313.001 ТУ;
 - генератор влажного воздуха «Родник-4М» по ТУ 4215-057-71803530-2011;
 - генератор влажного газа «Родник-6» по ТУ 4215-043-71803530-2007.

Сведения и методиках (методах) измерений

приведены в руководстве по эксплуатации на газоанализаторы модели GFC-7000, GFC-7001, GFC-7002, LGA-4000, 6400, 7300, 7320, 7500, 7600.

Нормативные и технические документы, устанавливающие требования к газоанализаторам GFC-7000, GFC-7001, GFC-7002, LGA-4000, 6400, 7300, 7320, 7500, 7600

ГОСТ 8.578-2008 ГСИ. Государственная поверочная схема для средств измерений содержания компонентов в газовых средах.

ГОСТ 13320-81 Газоанализаторы промышленные автоматические. Общие технические условия:

Техническая документация фирмы-изготовителя "Teledyne Analytical Instrumenst", США.

Рекомендации по областям применения в сфере государственного регулирования обеспечения единства измерений:

- при выполнении работ по оценке соответствия промышленной продукции и продукции других видов, а также иных объектов установленным законодательством Российской Федерации обязательным требованиям;
- при осуществлении деятельности в области охраны окружающей среды;
- при выполнении работ по обеспечению безопасных условий и охраны труда;
- при осуществлении производственного контроля за соблюдением установленных законодательством Российской Федерации требований промышленной безопасности к эксплуатации опасного производственного объекта.

Изготовитель

Фирма "Teledyne Analytical Instruments", США.

Адрес: 16830 Chestnut street, City of Industry, California 91748, USA.

Тел.: +1 626 934 1500, факс +1 626 934 1651

Адрес в Интернет: http://www.teledyneinstruments.com

Заявитель

ООО "Пи Эм Ай Системс", Российская Федерация.

Адрес: 129075, г. Москва, Мурманский проезд, д.14 корп.1

Тел.: +7 (495) 649 63 02, факс +7 (495) 649 63 02 Адрес в Интернет: http://www.pmi-systems.ru

Испытательный центр

Федеральное государственное унитарное предприятие «Всероссийский научноисследовательский институт метрологической службы» (ФГУП «ВНИИМС»)

Адрес: 119361, г. Москва, ул. Озерная, д.46 Тел./факс: (495)437-55-77 / 437-56-66; E-mail: office@vniims.ru, www.vniims.ru

Аттестат аккредитации Φ ГУП «ВНИИМС» по проведению испытаний средств измерений в целях утверждения типа № 30004-13 от 26.07.2013 г.

Заместитель Руководителя Федерального агентства по техническому регулированию и метрологии

Ф.В. Булыгин

М.п. «_____» _____ 2014 г.