ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Копры маятниковые ІМРАСТ

Назначение средства измерений

Копры маятниковые IMPACT предназначены для измерения энергии разрушения образцов при испытании на двухопорный изгиб, консольный изгиб, ударное растяжение и определения ударной вязкости материалов.

Описание средства измерений

Принцип действия копров маятниковых IMPACT основан на измерении величины энергии, затраченной на разрушение образца при ударе молотом маятника, свободно качающегося в поле силы тяжести. Энергия, затраченная на разрушение образца, определяется как разность потенциальной энергии маятника в начале падения и потенциальной энергии в точке взлёта маятника. Значение потенциальной энергии определяется массой маятника и углом отклонения.

Конструктивно копры маятниковые IMPACT состоят из рамы со стойкой, маятника с молотом, механизма поднятия, отпускания и торможения маятника, датчика угла отклонения маятника, модуля управления и обработки данных.

В верхней части стойки закреплёна ось, на которой подвешен маятник с молотом, в котором находится ударный нож и установлен датчик угла отклонения маятника. Датчик угла отклонения определяет угол подъёма маятника до удара и угол взлёта маятника после разрушения образца. Для удержания маятника во взведенном положении имеется фиксирующая защелка.

Испытываемый образец, в зависимости от вида испытаний, крепится на опорах, в зажимных губках или в поперечном ярме, расположенных на раме.

Модуль управления и обработки данных предназначен для управления работой копров маятниковых IMPACT, проведения настройки, калибровки, установки видов испытаний и их параметров, отображения результатов измерений на дисплее и вывода данных на внешние устройства. Конструкция корпуса копров маятниковых IMPACT обеспечивает ограничение доступа к определенным частям в целях предотвращения несанкционированной настройки и вмешательства, которые могут привести к искажению результатов измерений.

Копры маятниковые IMPACT выпускаются в четырех модификациях, отличающихся друг от друга номинальным значением потенциальной энергии, габаритными размерами и массой.

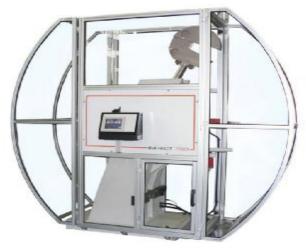


Рисунок 1. Копер маятниковый ІМРАСТ

Метрологические и технические характеристики

Метрологические и технические характеристики копров маятниковых IMPACT приведены в таблице 1.

Таблица 1

				Таблица
Характеристики		Модиф	икации	
	IMPACT 25	IMPACT 300	IMPACT 450	IMPACT 750
Номинальное значение потенциальной энергии маятника, Дж	25	300	450	750
Пределы допускаемого от- клонения потенциальной энергии маятника от номи- нального значения, %		±(),5	
Потеря энергии при свободном качании маятника за половину полного колебания, не более, %		0	,5	
Пределы допускаемой абсолютной погрешности измерения энергии, Дж	±0,15	±0,5	±1,5	±1,5
Скорость движения маятника в момент удара, м/с	(2,9/3,5/3,8)±0,05		5,5±0,05	
Габаритные размеры (Д×Ш×В), мм	1100×380×785	2360×10	010×2040	2254×1110×2145
Масса, кг	240	6′	70	1530
Напряжение питания переменного тока (50Гц), В		22	0	

Программное обеспечение

Идентификационные данные программного обеспечения (ПО), устанавливаемого в энергонезависимую память модуля управления, приведены в таблице 2.

Таблица 2

				,
Наимено-	Идентификаци-	Номер версии	Цифровой идентифи-	Алгоритм вычис-
вание про-	онное наимено-	(идентификаци-	катор программного	ления цифрового
граммного	вание про-	онный номер)	обеспечения	идентификатора
обеспечения	граммного обес-	программного	(контрольная сумма	программного
	печения	обеспечения	исполняемого кода)	обеспечения
Winimpact	Winimpact 1.2	1.X	4CA9A344	CRC 32
Winimpact	Winimpact in-	1.X	4CB9B444	CRC 32
	strumented			

[&]quot;1." – метрологически значимая часть ПО;

Уровень защиты встроенного ΠO от непреднамеренных и преднамеренных изменений – "A" по M M 3286-2010.

Знак утверждения типа

Знак утверждения типа наносится типографским способом на титульный лист эксплуатационной документации типографским способом и на табличку, прикрепленную к боковой поверхности методом офсетной печати.

[&]quot;Х" – метрологически не значимая часть ПО.

Комплектность средства измерений

1.	Копер маятниковый ІМРАСТ1	ШТ
2.	CD с Руководством по эксплуатации и методикой поверки1	ШТ
3.	СD с ПО	ШТ

Поверка

осуществляется в соответствии с документом МП РТ 2001-2013 «Копры маятниковые IMPACT. Методика поверки», утверждённым ГЦИ СИ ФБУ «РОСТЕСТ-МОСКВА» $30.08.2013~\Gamma$.

Основные средства поверки:

- Квадрант оптический, основная прогрешность ±30";
- Динамометр сжатия, разряд 2 по ГОСТ Р 8.663-09, основная погрешность $\pm 0.12\%$;
- Секундомер механический, класс 2.

Сведения о методиках (методах) измерений

Методы выполнения измерений копрами маятниковыми IMPACT содержатся в документе «Копры маятниковые IMPACT. Руководство по эксплуатации».

Нормативные и технические документы, устанавливающие требования к копрам маятниковым IMPACT

- 1. ГОСТ 10708-82 «Копры маятниковые. Технические условия»
- 2. ГОСТ 9454-78 «Металлы. Методы испытания на ударный изгиб при пониженной, комнатной и повышенной температурах.»
 - 3. Техническая документация фирмы «CESARE GALDABINI S.p.A.», Италия

Рекомендации по областям применения в сфере государственного регулирования обеспечения единства измерений

выполнение работ по оценке соответствия промышленной продукции и продукции других видов, а также иных объектов установленным законодательством Российской Федерации обязательным требованиям.

Изготовитель Фирма «CESARE GALDABINI S.p.A.», Италия

Via Giovanni XXIII, 18321010 Cardano al Campo (VA) Italia,

Тел: +39-0331-732751, Факс: +39-0331-730650

Заявитель ЗАО «Люкон»

117463, г Москва, просп. Новоясеневский, д 32, корп 1, офис 1

Tел/факс +7 (495) 989 56 80

Лист № 4 Всего листов 4

Испытательный центр

ГЦИ СИ Федеральное бюджетное учреждение

«Государственный региональный центр стандартизации,

метрологии и испытаний в г. Москве» (ГЦИ СИ ФБУ «Ростест-Москва»)

Адрес: 117418, г. Москва, Нахимовский проспект,31

Аттестат аккредитации ГЦИ СИ ФБУ «Ростест-Москва» по проведению испытаний средств измерений в целях утверждения типа №

30010-10 от 15.03.2010 г.

Заместитель Руководителя Федерального агентства по техническому регулированию и метрологии

Ф.В. Булыгин

М.п. « » 2014 г.