ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Система автоматизированная информационно-измерительная коммерческого учета электроэнергии (АИИС КУЭ) ОАО «АК «Транснефть» в части ОАО «Черномортранснефть» по ПК «Шесхарис» площадке «Грушовая»

Назначение средства измерений

Система автоматизированная информационно-измерительная коммерческого учета электроэнергии (АИИС КУЭ) ОАО «АК «Транснефть» в части ОАО «Черномортранснефть» по ПК «Шесхарис» площадке «Грушовая» (далее по тексту - АИИС КУЭ) предназначена для измерений активной и реактивной электроэнергии и мощности, сбора, обработки, хранения, формирования отчетных документов и передачи полученной информации.

Описание средства измерений

АИИС КУЭ представляет собой многофункциональную, многоуровневую автоматизированную систему с централизованным управлением и распределённой функцией измерения.

АИИС КУЭ включает в себя следующие уровни:

1-й уровень — измерительно-информационные комплексы (ИИК), включающие в себя измерительные трансформаторы тока (далее — TT) по ГОСТ 7746, трансформаторы напряжения (далее — TH) по ГОСТ 1983 и счетчики активной и реактивной электроэнергии по ГОСТ 30206, ГОСТ Р 52323 в режиме измерений активной электроэнергии и по ГОСТ 26035, ГОСТ Р 52425 в режиме измерений реактивной электроэнергии, вторичные измерительные цепи и технические средства приема-передачи данных. Метрологические и технические характеристики измерительных компонентов АИИС КУЭ приведены в таблицах 2-4.

2-й уровень – измерительно-вычислительный комплекс электроустановки (ИВКЭ) АИ-ИС КУЭ, включающий в себя устройство сбора и передачи данных СИКОН С70 (далее – УСПД), каналообразующую аппаратуру, устройство синхронизации времени (далее – УСВ) УСВ-2.

3-й уровень – информационно-вычислительный комплекс (ИВК), включающий в себя каналообразующую аппаратуру, сервер баз данных (БД) АИИС КУЭ, сервер опроса, сервер приложений, сервер резервного копирования, автоматизированные рабочие места персонала (АРМ), серверы точного времени ССВ-1Г и программное обеспечение (далее – ПО) ПК «Энергосфера».

Измерительные каналы (далее – ИК) состоят из трех уровней АИИС КУЭ.

Первичные фазные токи и напряжения трансформируются измерительными трансформаторами в аналоговые сигналы низкого уровня, которые по проводным линиям связи поступают на соответствующие входы электронного счетчика электрической энергии. В счетчике мгновенные значения аналоговых сигналов преобразуются в цифровой сигнал. По мгновенным значениям силы электрического тока и напряжения в микропроцессоре счетчика вычисляются мгновенные значения активной и полной мощности, которые усредняются за период 0,02 с. Средняя за период реактивная мощность вычисляется по средним за период значениям активной и полной мощности.

Электрическая энергия, как интеграл по времени от средней за период 0,02 с мощности, вычисляется для интервалов времени 30 мин.

Средняя активная (реактивная) электрическая мощность вычисляется как среднее значение мощности на интервале времени усреднения 30 мин.

Цифровой сигнал с выходов счетчиков поступает на входы УСПД, где осуществляется хранение измерительной информации, ее накопление и передача накопленных данных на верхний уровень системы, а также отображение информации по подключенным к УСПД устройствам.

На верхнем – третьем уровне системы выполняется обработка измерительной информации, в частности вычисление электроэнергии и мощности с учетом коэффициентов трансформации ТТ и ТН, формирование и хранение поступающей информации, оформление отчетных документов, отображение информации на мониторах АРМ и передача данных в организации – участники оптового рынка электрической энергии и мощности через каналы связи.

Данные по группам точек поставки в организации-участники ОРЭ и РРЭ, в том числе ОАО «АТС», ОАО «СО ЕЭС» и смежным субъектам, передаются в виде хml-файлов формата 80020 в соответствии с Приложением 11.1.1 к Положению о порядке получения статуса субъекта оптового рынка и ведения реестра субъектов оптового рынка с использованием ЭЦП субъекта рынка. Передача результатов измерений, состояния средств и объектов измерений по группам точек поставки производится с сервера ИВК настоящей системы с учетом полученных данных по точкам измерений, входящим в АИИС КУЭ ОАО "АК "Транснефть" (номер в Госреестре №54083-13).

АИИС КУЭ имеет систему обеспечения единого времени (СОЕВ). СОЕВ предусматривает поддержание единого календарного времени на всех уровнях системы (счетчиков, УСПД и ИВК). Задача синхронизации времени решается использованием службы единого координированного времени UTC. Для его трансляции используется спутниковая система глобального позиционирования ГЛОНАСС/GPS. Синхронизация часов ИВК АИИС КУЭ с единым координированным временем обеспечивается двумя серверами синхронизации времени ССВ-1Г (Госреестр СИ № 39485-08), входящими в состав ЦСОД. ССВ-1Г непрерывно обрабатывает данные, поступающие от антенного блока и содержащие точное время UTC спутниковой навигационной системы. Информация о точном времени распространяется устройством в сети ТСР/IP согласно протоколу NTP (Network Time Protocol). ССВ-1Г формирует сетевые пакеты, содержащие оцифрованную метку всемирного координированного времени, полученного по сигналам спутниковой навигационной системы ГЛОНАСС, с учетом задержки на прием пакета и выдачу ответного отклика. Сервер синхронизации времени обеспечивает постоянное и непрерывное обновление данных на сервере ИВК.

Устройство синхронизации времени УСВ-2, входящее в состав ИВКЭ обеспечивает автоматическую коррекцию часов УСПД и счетчиков. УСВ-2 синхронизирует собственное системное время к единому координированному времени по сигналам проверки времени, получаемым от GPS-приемника. Коррекция часов УСПД проводится вне зависимости от величины расхождения часов УСПД и времени приемника. Сличение часов счетчиков с часами УСПД осуществляется с периодичностью 1 раз в 30 минут, коррекция часов счетчиков проводится при расхождении часов счетчика и УСПД более чем на ± 1 с, но не чаще одного раза в сутки. Погрешность часов компонентов АИИС КУЭ не превышает ± 5 с.

Журналы событий счетчика электроэнергии, УСПД и сервера отражают: время (дата, часы, минуты) коррекции часов указанных устройств и расхождение времени в секундах корректируемого и корректирующего устройств в момент, непосредственно предшествующий корректировке.

Программное обеспечение

В АИИС КУЭ используется ПО ПК «Энергосфера» версии 7.0, в состав которого входят программы, указанные в таблице 1. ПК «Энергосфера» обеспечивает защиту программного обеспечения и измерительной информации паролями в соответствии с правами доступа. Средством защиты данных при передаче является кодирование данных, обеспечиваемое программными средствами ПК «Энергосфера».

Таблица 1 – Метрологические значимые модули ПО

Наименование программного обеспечения	Идентификацион- ное наименование программного обеспечения	Номер версии (идентификаци- онный номер) программного обеспечения	Цифровой идентифика- тор программного обеспечения (кон- трольная сумма испол- няемого кода)	Алгоритм вы- числения цифро- вого идентифи- катора про- граммного обес- печения
ПК «Энергосфера» 7.0	Библиотека pso_metr.dll	1.1.1.1	CBEB6F6CA69318BED 976E08A2BB7814B	MD5

Оценка влияния Π O на метрологические характеристики CИ – метрологические характеристики UК АИИС VН, указанные в таблицах V4, нормированы с учетом V4.

Защита ПО от непреднамеренных и преднамеренных изменений соответствует уровню «С» по МИ 3286-2010.

Метрологические и технические характеристики

Состав измерительных каналов и их метрологические характеристики приведены в таблицах 2 – 4.

Таблица 2 - Состав измерительных каналов АИИС КУЭ

Номер ИК	Наименование объекта	Состав измерительного канала						
Hor	паименование ооъекта	TT	TH	Счётчик	УСПД	Сервер	троэнергии	
1	ПС «Неберджаевская» 110/6 кВ, КРУН-6 кВ, Щит 0,4 кВ, ввод ТСН-1, ТСН-2	/ No DD / 5 3 //L	-	СЭТ-4ТМ.03.08 Кл.т. 0,2S/0,5 Зав. № 12040214	СИКОН С70 Зав. № 07104	HP ProLiant BL460 G6, HP ProLiant BL460 Gen8	активная	
2	ПС «Неберджаевская» 110/6 кВ КРУН-6 кВ, 2 СШ, яч. № 15	ТЛК-10 Коэфф. тр. 200/5 Кл.т. 0,5 А № 50492 С № 50491	НАМИ-10 № 895 Коэфф. тр. 6000/100 Кл.т. 0,2	СЭТ-4ТМ.03М Кл.т. 0,2S/0,5 Зав. № 0811135677	СИКОН С70 Зав. № 07104	HP ProLiant BL460 G6, HP ProLiant BL460 Gen8	активная	
3	ПС «Неберджаевская» 110/6 кВ, КРУН-6 кВ, 2 СШ, яч. № 14	ТЛК-10 Коэфф. тр. 300/5 Кл.т. 0,5 А № 50493 С № 50497	НАМИ-10 № 895 Коэфф. тр. 6000/100 Кл.т. 0,2	СЭТ-4ТМ.03М Кл.т. 0,2S/0,5 Зав. № 0810130626	СИКОН С70 Зав. № 07104	HP ProLiant BL460 G6, HP ProLiant BL460 Gen8	активная	
4	ПС «Неберджаевская» 110/6 кВ, КРУН-6 кВ, 2 СШ, яч. № 22	ТЛК-10 Коэфф. тр. 1000/5 Кл.т. 0,5 А № 45687 В № 45688 С № 45697	НАМИ-10 Коэфф. тр. 6000/100 Кл.т. 0,2 № 895	СЭТ-4ТМ.03М Кл.т. 0,2S/0,5 Зав. № 0811136256	СИКОН С70 Зав. № 07104	HP ProLiant BL460 G6, HP ProLiant BL460 Gen8	активная	

Продолжение таблицы 2

Номер ИК	Наименование объекта	Состав измерительного канала						
Ног	паименование ооъекта	TT TH		Счётчик	Счётчик УСПД		троэнергии	
5	ПС «Неберджаевская» 110/6 кВ, КРУН-6 кВ, 1 СШ, яч. № 1	ТЛК-10 Коэфф. тр. 1000/5 Кл.т. 0,5 А № 45649 В № 45701 С № 45713	НАМИ-10 Коэфф. тр. 6000/100 Кл.т. 0,2 № 804	СЭТ-4ТМ.03М Кл.т. 0,2S/0,5 Зав. № 0811136105	СИКОН С70 Зав. № 07104	HP ProLiant BL460 G6, HP ProLiant BL460 Gen8	активная	
6	ПС «Неберджаевская» 110/6 кВ, КРУН-6 кВ, 1 СШ, яч. № 7	ТЛК-10 Коэфф. тр. 200/5 Кл.т. 0,5 А № 50494 С № 50495	НАМИ-10 Коэфф. тр. 6000/100 Кл.т. 0,2 № 804	СЭТ-4ТМ.03М Кл.т. 0,2S/0,5 Зав. № 0811136127	СИКОН С70 Зав. № 07104	HP ProLiant BL460 G6, HP ProLiant BL460 Gen8	активная	
7	ПС «Неберджаевская» 110/6 кВ, КРУН-6 кВ, 1 СШ, яч. № 6	ТЛК-10 Коэфф. тр. 300/5 Кл.т. 0,5 А № 50490 С № 50498	НАМИ-10 Коэфф. тр. 6000/100 Кл.т. 0,2 № 804	СЭТ-4ТМ.03М Кл.т. 0,2S/0,5 Зав. № 0810130561	СИКОН С70 Зав. № 07104	HP ProLiant BL460 G6, HP ProLiant BL460 Gen8	активная	
8	ПС «Неберджаевская» 110/6 кВ, КРУН-6 кВ, 2 СШ, яч. № 19	ТЛО-10 Коэфф. тр. 600/5 Кл.т. 0,5S А № 10591 В № 10586 С № 10587	НАМИ-10 Коэфф. тр. 6000/100 Кл.т. 0,2 № 895	СЭТ-4ТМ.03 Кл.т. 0,2S/0,5 Зав. № 0103066193	СИКОН С70 Зав. № 07104	HP ProLiant BL460 G6, HP ProLiant BL460 Gen8	активная реактивная	

Продолжение таблицы 2.

Номер ИК	Наименование объекта		Состав измерительного канала					
Ног	паименование ооъекта	TT TH		Счётчик УСПД		Сервер	троэнергии	
9	ПС «Неберджаевская» 110/6 кВ, КРУН-6 кВ, 2 СШ, яч. № 20	ТЛО-10 Коэфф. тр. 600/5 Кл.т. 0,5S А № 6957 В № 6953 С № 6955	НАМИ-10 Коэфф. тр. 6000/100 Кл.т. 0,2 № 895	СЭТ-4ТМ.03 Кл.т. 0,2S/0,5 Зав. № 0103062196	СИКОН С70 Зав. № 07104	HP ProLiant BL460 G6, HP ProLiant BL460 Gen8	активная	
10	ПС «Неберджаевская» 110/6 кВ, КРУН-6 кВ, 2 СШ, яч. № 16	ТЛО-10 Коэфф. тр. 600/5 Кл.т. 0,5S А № 10600 В № 10599 С № 10592	НАМИ-10 Коэфф. тр. 6000/100 Кл.т. 0,2 № 895	СЭТ-4ТМ.03 Кл.т. 0,2S/0,5 Зав. № 0103063181	СИКОН С70 Зав. № 07104	HP ProLiant BL460 G6, HP ProLiant BL460 Gen8	активная	
11	ПС «Неберджаевская» 110/6 кВ, КРУН-6 кВ, 1 СШ, яч. № 8	ТЛО-10 Коэфф. тр. 600/5 Кл.т. 0,5S А № 10597 В № 10594 С № 10603	НАМИ-10 Коэфф. тр. 6000/100 Кл.т. 0,2 № 804	СЭТ-4ТМ.03 Кл.т. 0,2S/0,5 Зав. № 0103063109	СИКОН С70 Зав. № 07104	HP ProLiant BL460 G6, HP ProLiant BL460 Gen8	активная	
12	ПС «Неберджаевская» 110/6 кВ, КРУН-6 кВ, 1 СШ, яч. № 4	ТЛО-10 Коэфф. тр. 600/5 Кл.т. 0,5S А № 10598 В № 6956 С № 10595	НАМИ-10 Коэфф. тр. 6000/100 Кл.т. 0,2 № 804	СЭТ-4ТМ.03 Кл.т. 0,2S/0,5 Зав. № 0103062030	СИКОН С70 Зав. № 07104	HP ProLiant BL460 G6, HP ProLiant BL460 Gen8	активная реактивная	

Окончание таблицы 2.

Номер ИК	Наименование объекта	Состав измерительного канала						
Но	Transiciobanne oobekta	TT	TH	Счётчик	УСПД	Сервер	троэнергии	
13	ПС «Неберджаевская» 110/6 кВ, КРУН-6 кВ, 1 СШ, яч. № 3	ТЛО-10 Коэфф. тр. 600/5 Кл.т. 0,5S А № 6959 В № 10596 С № 6954	НАМИ-10 Коэфф. тр. 6000/100 Кл.т. 0,2 № 804	СЭТ-4ТМ.03 Кл.т. 0,2S/0,5 Зав. № 0103066178	СИКОН С70 Зав. № 07104	HP ProLiant BL460 G6, HP ProLiant BL460 Gen8	активная реактивная	

Таблица 3 - Метрологические характеристики ИК (активная энергия)

	, , , , , , , , , , , , , , , , , , ,	Метрологические характеристики ИК						
11 1117	п	Основн	ая погрег	шность,	Погрешность в рабочих			
Номер ИК	Диапазон тока		$(\pm\delta)$, %		усло	виях, (± &	5), %	
		$\cos \varphi =$	$\cos \varphi =$	$\cos \varphi =$	$\cos \phi =$	$\cos \varphi =$	$\cos \varphi =$	
		0,9	0,8	0,5	0,9	0,8	0,5	
1	Ін₁≤І₁≤1,2Ін₁	0,9	1,0	1,8	1,1	1,2	2,0	
1	0,2IH ₁ ≤I ₁ <ih<sub>1</ih<sub>	0,9	1,0	1,8	1,1	1,2	2,0	
(ТТ 0,5S; Сч 0,2S)	0,05IH ₁ ≤I ₁ <0,2IH ₁	1,3	1,4	2,7	1,4	1,6	2,8	
(11 0,35, C4 0,25)	0,02IH ₁ ≤I ₁ <0,05IH ₁	2,4	2,8	5,3	2,5	2,9	5,4	
2, 3, 4, 5, 6, 7	I _{H1} ≤I ₁ ≤1,2I _{H1}	1,0	1,1	1,9	1,2	1,3	2,1	
	0,2Ін₁≤І₁<Ін₁	1,3	1,5	2,8	1,5	1,6	2,9	
(TT 0,5; TH 0,2; Сч 0,2S)	0,05Ін₁≤І₁<0,2Ін₁	2,4	2,8	5,4	2,5	2,9	5,4	
8, 9, 10, 11, 12, 13	I _{H1} ≤I ₁ ≤1,2I _{H1}	1,0	1,1	1,9	1,2	1,3	2,1	
	0,2IH ₁ ≤I ₁ <ih<sub>1</ih<sub>	1,0	1,1	1,9	1,2	1,3	2,1	
(TT 0,5S; TH 0,2;	$0,05I_{H_1} \le I_1 < 0,2I_{H_1}$	1,3	1,5	2,8	1,5	1,6	2,9	
Сч 0,2S)	$0,02I_{H_1} \le I_1 < 0,05I_{H_1}$	2,5	2,8	5,4	2,5	2,9	5,4	

Таблица 4 - Метрологические характеристики ИК (реактивная энергия)

таолица 4 - Метрологические характеристики итк (реактивная энергия)									
		Метрологические характеристики ИК							
Номер ИК	Диапазон тока	Основн	ная погрег $(\pm \delta)$, %	шность,	Погрешность в рабочих условиях, $(\pm \delta)$, %				
_			1			, `	T .		
		$\cos \varphi =$	$\cos \varphi =$	$\cos \varphi =$	$\cos \varphi =$	$\cos \varphi =$	$\cos \varphi =$		
		0,9	0,8	0,5	0,9	0,8	0,5		
1	I _{H1} ≤I ₁ ≤1,2I _{H1}	1,9	1,6	1,0	2,5	2,2	1,7		
1	0,2IH ₁ ≤I ₁ <ih<sub>1</ih<sub>	1,9	1,6	1,0	2,5	2,2	1,7		
(ТТ 0,5Ѕ; Сч 0,5)	$0,05I_{H_1} \le I_1 < 0,2I_{H_1}$	2,9	2,4	1,4	3,3	2,8	2,0		
(11 0,35, 010,3)	$0,02I_{H_1} \le I_1 < 0,05I_{H_1}$	5,4	4,4	2,6	5,6	4,6	3,0		
2, 3, 4, 5, 6, 7	I _{H1} ≤I ₁ ≤1,2I _{H1}	2,0	1,7	1,1	2,6	2,3	1,8		
	0,2Ін₁≤І₁<Ін₁	2,8	2,3	1,4	3,2	2,7	2,0		
(TT 0,5; TH 0,2; Сч 0,5)	0,05Ін₁≤І₁<0,2Ін₁	5,4	4,4	2,5	5,7	4,6	2,9		
8, 9, 10, 11, 12, 13	I _{H1} ≤I ₁ ≤1,2I _{H1}	2,0	1,7	1,1	2,6	2,3	1,8		
	0,2Ін₁≤І₁<Ін₁	2,0	1,7	1,1	2,6	2,3	1,8		
(TT 0,5S; TH 0,2;	0,05Ін₁≤І₁<0,2Ін₁	3,0	2,4	1,5	3,4	2,9	2,0		
Сч 0,5)	$0,02I_{H_1} \le I_1 < 0,05I_{H_1}$	5,4	4,4	2,7	5,7	4,6	3,0		

Примечания:

- 1. Характеристики погрешности ИК даны для измерений электроэнергии и средней мощности (получасовой).
- 2. В качестве характеристик относительной погрешности указаны границы интервала, соответствующие вероятности 0,95.
 - 3. Нормальные условия эксплуатации:
 - параметры сети:

диапазон напряжения (0,99 – 1,01) Uном;

```
диапазон силы тока (0.01 - 1.2) Іном,
частота (50±0,15) Гц;
коэффициент мощности \cos \phi = 0.9 инд.;
- температура окружающей среды:
TT и TH от минус 45 °C до плюс 40 °C;
счетчиков от плюс 21 °C до плюс 25 °C;
УСПД от плюс 15 °C до плюс 25 °C;
ИВК от плюс 10 °С до плюс 30 °С;
- магнитная индукция внешнего происхождения, не более 0,05 мТл.
4. Рабочие условия эксплуатации:
- для ТТ и ТН:
       - параметры сети:
       диапазон первичного напряжения (0.9 - 1.1) UH<sub>1</sub>;
       диапазон силы первичного тока (0.02 - 1.2) Ін<sub>1</sub>;
       коэффициент мощности \cos \varphi (\sin \varphi) 0.5 - 1.0 (0.87 - 0.5);
       частота (50 \pm 0.4) Гц;
       - температура окружающего воздуха от минус 45°C до плюс 40 °C.
- для счетчиков электроэнергии:
       - параметры сети:
       диапазон вторичного напряжения (0.9 - 1.1) UH<sub>2</sub>;
       диапазон силы вторичного тока (0.02-1.2) IH<sub>2</sub>;
       коэффициент мощности \cos \varphi (\sin \varphi) 0.5 - 1.0 (0.87 - 0.5);
       частота (50 \pm 0.4) Гц;
       - температура окружающего воздуха: от минус 40 °C до плюс 60 °C;
       - магнитная индукция внешнего происхождения, не более 0,5 мТл.
```

- 5. Погрешность в рабочих условиях указана для $\cos \varphi = 0.8$ инд и температуры окружающего воздуха в месте расположения счетчиков электроэнергии от плюс 5 °C до плюс 35 °C.
- 6. Допускается замена измерительных трансформаторов, счетчиков, УСПД, УСВ на аналогичные утвержденных типов с метрологическими характеристиками не хуже, чем у перечисленных в Таблице 2. Замена оформляется актом в установленном в ОАО «Черномортранснефть» порядке. Акт хранится совместно с настоящим описанием типа АИИС КУЭ как его неотъемлемая часть.

Параметры надежности применяемых в АИИС КУЭ измерительных компонентов:

- электросчётчик СЭТ-4TM.03 среднее время наработки на отказ не менее $T=90\ 000\ \text{ч}$, среднее время восстановления работоспособности $tB=2\ \text{ч}$;
- электросчётчик СЭТ-4ТМ.03.08 среднее время наработки на отказ не менее $T=90\ 000\ \mathrm{y}$, среднее время восстановления работоспособности $t = 2\ \mathrm{y}$;
- электросчётчик СЭТ-4ТМ.03М среднее время наработки на отказ не менее $T=165\ 000\ v$, среднее время восстановления работоспособности $t=2\ v$;
- сервер HP ProLiant BL460 G6, HP ProLiant BL460 Gen8– среднее время наработки на отказ не менее T_{G6} =261163, T_{Gen8} =264599 ч, среднее время восстановления работоспособности t_{B} = 0.5 ч.

Надежность системных решений:

- защита от кратковременных сбоев питания сервера с помощью источника бесперебойного питания;
- резервирование каналов связи: информация о результатах измерений может передаваться в организации—участники оптового рынка электроэнергии с помощью электронной почты и сотовой связи.

В журналах событий фиксируются факты:

- журнал счётчика:
 - параметрирования;
 - пропадания напряжения;
 - коррекции времени в счетчике;
- журнал УСПД:
 - параметрирования;
 - пропадания напряжения;
 - коррекции времени в счетчике и УСПД;
 - пропадание и восстановление связи со счетчиком;

Защищённость применяемых компонентов:

- механическая защита от несанкционированного доступа и пломбирование:
- электросчётчика;
- промежуточных клеммников вторичных цепей напряжения;
- испытательной коробки;
- УСПД;
- сервера;
- защита на программном уровне информации при хранении, передаче, параметрировании:
 - электросчетчика;
 - УСПД;
 - сервера.

Возможность коррекции времени в:

- электросчетчиках (функция автоматизирована);
- УСПД (функция автоматизирована);
- ИВК (функция автоматизирована).

Возможность сбора информации:

- о результатах измерений (функция автоматизирована);
- о состоянии средств измерений.

Цикличность:

- измерений 30 мин (функция автоматизирована);
- сбора 30 мин (функция автоматизирована).

Глубина хранения информации:

- электросчетчик тридцатиминутный профиль нагрузки в двух направлениях 113 суток; при отключении питания не менее 10 лет;
- УСПД суточные данные о тридцатиминутных приращениях электроэнергии по каждому каналу и электроэнергии, потребленной за месяц, по каждому каналу 45 суток; сохранение информации при отключении питания не менее 10 лет;
- Сервер БД хранение результатов измерений, состояний средств измерений не менее 3,5 лет (функция автоматизирована).

Знак утверждения типа

Знак утверждения типа наносится на титульные листы эксплуатационной документации на систему автоматизированную информационно-измерительную коммерческого учёта электроэнергии (АИИС КУЭ) ОАО «АК «Транснефть» в части ОАО «Черномортранснефть» по ПК «Шесхарис» площадке «Грушовая» типографским способом.

Комплектность средства измерений

В комплект поставки входит техническая документация на систему и на комплектующие средства измерений.

Комплектность АИИС КУЭ представлена в таблице 5.

Таблица 5 - Комплектность АИИС КУЭ

Наименование	Тип	№ Госреестра	Количество, шт.
Трансформатор тока	ТОП-0,66	15174-06	3
Трансформатор тока	ТЛК-10	9143-06	14
Трансформатор тока	ТЛО-10	25433-03	18
Трансформатор напряжения	НАМИ-10	11094-87	2
Счётчик электрической энер- гии многофункциональный	СЭТ-4ТМ.03.08	27524-04	1
Счётчик электрической энер- гии многофункциональный	СЭТ-4ТМ.03	27524-04	6
Счётчик электрической энер- гии многофункциональный	СЭТ-4ТМ.03М	36697-12	6
Устройство сбора и передачи данных	СИКОН С70	28822-05	1
Устройство синхронизации времени	УСВ-2	41681-10	1
Сервер синхронизации времени	CCB-1Γ	39485-08	2
Сервер с программным обеспечением	ПК «Энергосфера»	-	1
Методика поверки	-	-	1
Формуляр	-	-	1
Руководство по эксплуатации	-	-	1

Поверка

осуществляется по документу МП 57605-14 «Система автоматизированная информационноизмерительная коммерческого учета электроэнергии (АИИС КУЭ) ОАО «АК «Транснефть» в части ОАО «Черномортранснефть» по ПК «Шесхарис» площадке «Грушовая». Методика поверки», утвержденному ФГУП «ВНИИМС» в марте 2014 г.

Перечень основных средств поверки:

- трансформаторов тока в соответствии с ГОСТ 8.217-2003 «ГСИ. Трансформаторы тока. Методика поверки»;
- трансформаторов напряжения в соответствии с ГОСТ 8.216-2011 «ГСИ. Трансформаторы напряжения. Методика поверки»;
- по МИ 3195-2009 «ГСИ. Мощность нагрузки трансформаторов напряжения без отключения цепей. Методика выполнения измерений»;
- по МИ 3196-2009 «ГСИ. Вторичная нагрузка трансформаторов тока без отключения цепей. Методика выполнения измерений»;
- счетчиков СЭТ-4ТМ.03 по документу «Счетчики электрической энергии многофункциональные СЭТ-4ТМ.03. Руководство по эксплуатации. Методика поверки» ИЛГШ.411152.124 РЭ1, согласованному с ГЦИ СИ ФГУ «Нижегородский ЦСМ» 10 сентября 2004 г.;
- счетчиков СЭТ-4ТМ.03М по документу «Счетчики электрической энергии многофункциональные СЭТ-4ТМ.03М, СЭТ-4ТМ.02М. Руководство по эксплуа-

тации. Часть 2. Методика поверки» ИЛГШ.411152.145 РЭ1, согласованному с ГЦИ СИ ФБУ «Нижегородский ЦСМ» «04» мая 2012 г.;

- радиочасы МИР РЧ-01, принимающие сигналы спутниковой навигационной системы Global Positioning System (GPS), номер в Государственном реестре средств измерений № 27008-04;
- переносной компьютер с ПО и оптический преобразователь для работы с счетчиками системы и с ПО для работы с радиочасами МИР РЧ-01;
- термогигрометр CENTER (мод.314): диапазон измерений температуры от минус 20 до плюс 60 °C, дискретность 0,1 °C; диапазон измерений относительной влажности от 10 % до 100 %, дискретность 0,1 %.

Сведения о методиках (методах) измерений

Метод измерений изложен в документе «Методика измерений количества электрической энергии (мощности) с использованием автоматизированной информационно-измерительной системы коммерческого учета электрической энергии ОАО «АК «Транснефть» в части ОАО «Черномортранснефть» по ПК «Шесхарис» площадке «Грушовая» (АИИС КУЭ ОАО «АК «Транснефть» в части ОАО «Черномортранснефть» по ПК «Шесхарис» площадке «Грушовая»)», аттестованной ЗАО ИТФ «СИСТЕМЫ И ТЕХНОЛОГИИ», аттестат об аккредитации № РОСС RU.0001.310043 от 17.07.2012 г.

Нормативные и технические документы, устанавливающие требования к системе автоматизированной информационно-измерительной коммерческого учета электроэнергии и мощности (АИИС КУЭ)

ГОСТ 22261-94 Средства измерений электрических и магнитных величин. Общие технические условия.

ГОСТ 34.601-90 Информационная технология. Комплекс стандартов на автоматизированные системы. Автоматизированные системы. Стадии создания.

ГОСТ Р 8.596-2002 ГСИ. Метрологическое обеспечение измерительных систем. Основные положения.

МИ 3000-2006 Рекомендация. ГСИ. Системы автоматизированные информационно-измерительные коммерческого учета электрической энергии. Типовая методика поверки.

Рекомендации по областям применения в сфере государственного регулирования обеспечения единства измерений

- при осуществлении торговли и товарообменных операций.

Изготовитель

ЗАО ИТФ «СИСТЕМЫ И ТЕХНОЛОГИИ»

Юридический адрес: 600026, г. Владимир, ул. Лакина, д.8

Тел.: (4922) 33-67-66 Факс: (4922) 42-45-02 E-mail: <u>st@sicon.ru</u>

Заявитель

Общество с ограниченной ответственностью «Центр энергетических решений»

ООО «Центр энергетических решений»

Юридический адрес: 119048, г. Москва, Комсомольский проспект, д. 40

Испытательный центр

Федеральное государственное унитарное предприятие «Всероссийский научно-исследовательский институт метрологической службы» (ФГУП «ВНИИМС»)

Адрес: 119631, г. Москва, ул. Озерная, д.46

Тел/факс: (495)437-55-77 / 437 56 66 E-mail: <u>office@vniims.ru</u>, <u>www.vniims.ru</u>

Аттестат аккредитации ФГУП «ВНИИМС» по проведению испытаний средств измерений

в целях утверждения типа №30004-13 от 26.07.2013 г.

Заместитель Руководителя Федерального агентства по техническому регулированию и метрологии

Ф.В. Булыгин

М.п. «___»_____2014 г.