ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Гамма-радиометры РКГ-РМ1406

Назначение средства измерений

Гамма-радиометры РКГ-РМ1406 (далее - радиометры) предназначены для измерений удельной активности или объемной активности гамма–излучающих радионуклидов 137 Cs и 40 K в воде, продуктах питания, почве, строительных материалах и других объектах окружающей среды.

Описание средства измерений

Принцип действия радиометра основан на регистрации сцинтилляционным детектором Cs(I) гамма-излучения радионуклидов, присутствующих в пробе, измерении аппаратурного спектра и последующей его обработки персональным компьютером (ПК) по определенному алгоритму и вычислении удельной активности (УА) или объемной активности (ОА) измеряемых радионуклидов. Измеренное значение УА или ОА индицируется на дисплее ПК в режиме реального времени.

Конструктивно детектор размещен в термоударопрочном пылевлагозащищенном тонкостенном металлическом корпусе цилиндрической формы. Проба помещается в сосуд Маринелли объемом 0,5 л, который устанавливается непосредственно на радиометр. Для увеличения чувствительности детектор вместе с пробой устанавливается в свинцовый блок защиты.

Питание детектора осуществляется от ПК по USB интерфейсу.

Общий вид радиометра представлен на рисунке 1, место пломбирования от несанкционированного доступа – на рисунке 2.

Рисунок 1 - Общий вид гамма—радиометра РКГ-РМ1406: 1 - радиометр РКГ-РМ1406; 2 - сосуды Маринелли;

3 - пластиковый контейнер для хранения (входит в состав упаковки); 4 – блок защиты

Рисунок 2 - Место пломбирования гамма—радиометра РКГ-РМ1406 от несанкционированного доступа (находится на основании радиометра)

Программное обеспечение

Программное обеспечение (ПО) гамма-радиометров состоит из двух частей:

- встроенное ПО (программа микропроцессора), размещенное в энергонезависимой памяти радиометра, обеспечивает регистрацию спектров и передачу информации в управляющий ПК;
- загружаемое ПО «Программа 1406» устанавливается на управляющий ПК перед первым использованием радиометра. Загрузка ПО, устанавливаемого на ПК, осуществляется обычным способом с поставляемого CD диска или через Интернет с сайта ООО «ПОЛИМАСТЕР».

Разделение загружаемого ПО с выделением метрологически значимой части не предусмотрено. К метрологически значимому относится все загружаемое ПО и содержит следующие файлы:

- «Pm1406Library.dll» осуществляет расчет удельной активности радионуклидов 137 Cs и 40 K с учетом скорости счета радиационного фона, скорости счета в окнах 137 Cs и 40 K и с учетом геометрии измерения;
- «Pm1406DeviceLibrary.dll» осуществляет управление набором спектра, чтением параметров, записанных в энергонезависимой памяти радиометра и управляет обменом информацией между радиометром и ПК;
- «ExchangeLibrary.dll» осуществляет обмен данными по USB интерфейсу между ПК и радиометром;
- «РМ1406.exe» основной запускаемый файл. Реализует пользовательский интерфейс и все функции, предоставляемые пользователю. Использует все описанные выше *.dll файлы.

Влияние ПО учтено при нормировании метрологических характеристик.

Запись встроенного ПО в энергонезависимую память радиометра осуществляется в процессе производства. ПО защищено от преднамеренных и непреднамеренных изменений защитной пломбой. Пломба ограничивает доступ к ПО, при этом ПО не может быть изменено без нарушения пломбы. Кроме того, ПО не может быть изменено без специального оборудования изготовителя.

Защита загружаемого ПО на ПК от преднамеренных и непреднамеренных действий осуществляется сравнением контрольных сумм метрологически значимых файлов.

В соответствии с Р 50.2.077-2014 уровень защиты встроенного ПО гамма–радиометров РКГ-РМ1406 от непреднамеренных и преднамеренных изменений соответствует уровню «высокий».

В соответствии с Р 50.2.077-2014 уровень защиты загружаемого ПО «Программа 1406» гамма–радиометров РКГ-РМ1406 от непреднамеренных и преднамеренных изменений соответствует уровню «средний».

Идентификационные данные ПО приведены в Таблице 1.

Таблица 1 - Идентификационные данные ПО

таолица т - идентификационные данные тто		
Идентификационные данные (признаки)	Значение	
Программа микроп	роцессора	
Идентификационное наименование ПО	ТИГР.00022.00.02.5-04	
Номер версии (идентификационный номер) ПО	v 04*	
Цифровой идентификатор ПО	Не определен**	
Программа 1406 «Рт14	-06Library.dll»	
Идентификационное наименование ПО	ТИГР.00055.00.00-06	
Номер версии (идентификационный номер) ПО	v 2.0.0.0*	
Цифровой идентификатор ПО (MD5)	956c61f79b3280be8341ab8cc713290a **	
Программа 1406 «Pm1406DeviceLibrary.dll»		
Идентификационное наименование ПО	ТИГР.00055.00.00-06	
Номер версии (идентификационный номер) ПО	v 1.0.0.0*	
Цифровой идентификатор ПО (MD5)	2e49bd5f52b7037cf3a4e626be984e10****	
Программа 1406 «Excha		
Идентификационное наименование ПО	ТИГР.00055.00.00-06	
Номер версии (идентификационный номер) ПО	v 1.0.0.0*	
Цифровой идентификатор ПО (MD5)	7046f62d0e1e0331e4f8637786156944****	
Программа 1406 «РМ	M1406.exe»	
Идентификационное наименование ПО	ТИГР.00055.00.00-06	
Номер версии (идентификационный номер) ПО	v 1.2.28.12*	
Цифровой идентификатор ПО (MD5)	ab23f1b338017f1f1414644569f43d83****	
Примечание:		
* - номер версии не ниже указанного в таблице		
** - доступа к идентификатору встроенного ПО не	Γ	
- контрольная сумма относится к текущей верс	ии ПО	

Метрологические и технические характеристики

Таблица 2 - Метрологические характеристики

таолица 2 - метрологические характеристики			
Наименование характеристики	Значение		
Диапазон измерений УА (ОА) радионуклида ¹³⁷ Cs			
в геометрии измерения сосуд Маринелли, Бк/кг			
(Бк/л):			
- с блоком защиты	от 25 до 10 ⁵		
- без блока защиты	от 100 до 10 ⁵		
Диапазон измерений УА (OA) радионуклида ⁴⁰ К в			
геометрии измерения сосуд Маринелли, Бк/кг (Бк/л):			
- с блоком защиты	от 700 до 10 ⁵		
- без блока защиты	от 1300 до 10 ⁵		
Пределы допускаемой основной относительной по-	$\pm (30 + \text{K/A}),$		
грешности при измерении УА (ОА) радионуклидов			
¹³⁷ Сs и ⁴⁰ К, %	- 500 Бк/кг для радионуклида ¹³⁷ Cs		
	с блоком защиты;		
	- 2000 Бк/кг для радионуклида ¹³⁷ Cs		
	без блока защиты,		
	- 14000 Бк/кг для радионуклида 40 К		
	с блоком защиты;		
	- 26000 Бк/кг для радионуклида 40 К		
	без блока защиты;		
	А – измеренная удельная активность,		
	Бк/кг.		

Наименование характеристики	Значение
Скорость счета собственного гамма-фона с блоком	
защиты при значении МЭД внешнего радиационно-	
го фона гамма-излучения не более 0,2 мкЗв/ч, с ⁻¹ , не	
более:	
- в окне ¹³⁷ Cs	2
- в окне ⁴⁰ К	0,5
Коэффициент вариации, %, не более	20
Плотность пробы при измерении УА(ОА), г/см ³	от 0,2 до 1,6
Пределы допускаемой дополнительной относи-	
тельной погрешности при измерении УА (ОА), %:	
- при изменении температуры окружающего	
воздуха от нормальной (20±5) °C до 0 °C	± 10
- при изменении температуры окружающего	
воздуха от нормальной (20±5) °C до +50 °C	± 15
- при относительной влажности окружающего	
воздуха до 98 % при +35 °C	± 10
- при воздействии магнитного поля промыш-	
ленной частоты напряженностью 800 А/м, не	
более	± 10
- при воздействии радиочастотных электромаг-	
нитных полей в диапазоне частот от 80 до	
1000 МГц (испытательный уровень 4 (30 В/м))	
и в диапазонах частот от 800 до 960 МГц и от	
1,4 до 2,5 ГГц (в условиях помехоэмиссии от	
цифровых радиотелефонов)	± 10
Нормальные условия измерений	
- температура окружающей среды, °С	от +15 до +25
- относительная влажность, %	от 30 до 80
- атмосферное давление, кПа	от 86 до 106,7

Таблица 3 – Основные технические характеристики

Наименование характеристики	Значение
Габаритные размеры радиометра без блока защиты,	
мм, не более	
- диаметр	80
- высота	84
Габаритные размеры блока защиты, мм, не более	
- диаметр	154
- высота	188
Габаритные размеры радиометра в упаковке, мм,	
не более	
- длина	170
- ширина	135
- высота	185
Габаритные размеры блока защиты в упаковке,	
мм, не более	
- длина	222
- ширина	198
- высота	198
Масса радиометра без блока защиты, кг, не более	0,5
Масса блока защиты, кг, не более	20

Наименование характеристики	Значение	
Масса радиометра в упаковке, кг, не более	1,0	
Масса блока защиты в упаковке, кг, не более	22,0	
Условия эксплуатации:		
- температура окружающей среды, °С	от 0 до +50	
- относительная влажность при температуре 35 °C, %	до 98	
- атмосферное давление, кПа	от 84 до 106,7	
Степень защиты, обеспечиваемая корпусом ра-		
диометра по ГОСТ 14254	IP 55	
Средняя наработка на отказ, ч	10000	
Средний срок службы, лет	8	
Среднее время восстановления, мин	60	

Знак утверждения типа

наносится на титульный лист паспорта гамма - радиометра ТИГР.412128.003ПС типографским способом.

Комплектность радиометров

Таблица 4 – Комплектность гамма-радиометров РКГ-РМ1406

Наименование, тип	Обозначение	Количество
Гамма-радиометр РКГ-РМ1406	ТИГР.412128.003	1
Паспорт 1)	ТИГР.412128.003ПС	1
Методика поверки	МРБ МП 2325-2013	1
Краткое руководство по эксплуатации	ТИГР.412128.003КРЭ	1
Комплект принадлежностей:	ТИГР.305621.513	1
Упаковка гамма-радиометра	ТИГР.305641.090	1
¹⁾ В состав паспорта входит методика поверки		

Поверка

осуществляется по документу МРБ МП.2325-2013 «Гамма-радиометры РКГ-РМ1406. Методика поверки», утвержденному БелГИМ 19 июня 2013 г. (с извещением ТИГР.215-18 об изменении №1 МРБ МР.2325-2013, утвержденным БелГИМ 02.10.2018 г.).

Основные средства поверки:

рабочие эталоны 2-го разряда по ГОСТ 8.033-96 растворы радионуклида 137 Cs объемной активностью $(0,5\pm0,1)\cdot10^2$ Бк/л, $(5,0\pm1,0)\cdot10^2$ Бк/л, $(5,0\pm1,0)\cdot10^3$ Бк/л, $(7,5\pm1,0)\cdot10^4$ Бк/л в геометрии сосуд Маринелли, аттестованные с погрешностью не более ±6 %.

Допускается применение аналогичных средств поверки, обеспечивающих определение метрологических характеристик поверяемых СИ с требуемой точностью.

Знак поверки (оттиск поверительного клейма) наносится на свидетельство о поверке.

Сведения о методиках (методах) измерений

приведены в эксплуатационном документе.

Нормативные и технические документы, устанавливающие требования к гаммарадиометрам РКГ-РМ1406

ГОСТ 23923-89 Средства измерений удельной активности радионуклида. Общие технические требования и методы испытаний

ГОСТ 8.033-96 ГСИ. Государственная поверочная схема для средств измерений активности радионуклидов, потока и плотности потока альфа-, бета-частиц и фотонов радионуклидных источников

ТУ ВҮ 100345122.069-2013 Гамма-радиометр РКГ-РМ1406. Технические условия

Изготовитель

Общество с ограниченной ответственностью «Полимастер»

(ООО «Полимастер»), Республика Беларусь,

Адрес: Республика Беларусь, 220141 г. Минск, ул. Ф. Скорины, 51

Телефон: +375 17 268 68 19 Факс: +375 17 260 23 56

Испытательный центр

Экспертиза проведена Федеральным государственным унитарным предприятием «Всероссийский научно-исследовательский институт метрологии им. Д.И. Менделеева»

Адрес: 190005, г. Санкт- Петербург, Московский пр. д. 19

Телефон: +7 (812) 251-76-01 Факс: +7 (812) 713-01-14 Web-сайт: <u>www.vniim.ru</u> E-mail: info@vniim.ru

Аттестат аккредитации ФГУП «ВНИИМ им. Д.И. Менделеева» по проведению испытаний средств измерений в целях утверждения типа № RA.RU.311541 от 23.03.2016 г.

Заместитель Руководителя Федерального агентства по техническому регулированию и метрологии

А.В. Кулешов

М.п. « ___ » _____2019 г.