ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Система автоматизированная информационно-измерительная коммерческого учета электроэнергии (АИИС КУЭ) ОАО «Центросвармаш»

Назначение средства измерений

Система автоматизированная информационно-измерительная коммерческого учета электроэнергии (АИИС КУЭ) ОАО «Центросвармаш» (далее по тексту — АИИС КУЭ) предназначена для измерения активной и реактивной электроэнергии, формирования отчетных документов и передачи информации в ОАО «АТС», ОАО «СО ЕЭС» и прочим заинтересованным организациям в рамках согласованного регламента.

Описание средства измерений

АИИС КУЭ представляет собой многоуровневую автоматизированную измерительную систему с централизованным управлением и распределенной функцией измерения.

Измерительно-информационные каналы (ИИК) АИИС КУЭ состоят из трёх уровней:

1-ый уровень – измерительные трансформаторы напряжения (ТН), измерительные трансформаторы тока (ТТ), многофункциональные счетчики активной и реактивной электрической энергии (далее по тексту – счетчики), вторичные измерительные цепи и технические средства приема-передачи данных;

2-ой уровень – измерительно-вычислительный комплекс электроустановки (ИВКЭ) включающий устройство сбора и передачи данных (УСПД) СИКОН С70 (Госреестр № 28822-05), технические средства приема-передачи данных, каналы связи, для обеспечения информационного взаимодействия между уровнями системы.

3-ий уровень – информационно-вычислительный комплекс (ИВК), включает в себя сервер АИИС КУЭ, автоматизированное рабочее место (АРМ) диспетчера АИИС КУЭ, устройство синхронизации времени (УСВ) УСВ-1 (Госреестр № 28716-05), а также совокупность аппаратных, каналообразующих и программных средств, выполняющих сбор информации с нижних уровней, ее обработку и хранение.

АИИС КУЭ решает следующие задачи:

- периодический (1 раз в сутки) и/или по запросу автоматический сбор привязанных к единому календарному времени результатов измерений приращений электроэнергии с заданной дискретностью учета (30 мин);
- периодический (1 раз в сутки) и/или по запросу автоматический сбор данных о состоянии средств измерений во всех ИИК;
- хранение результатов измерений и данных о состоянии средств измерений в специализированной базе данных, отвечающей требованию повышенной защищенности от потери информации (резервирование баз данных) и от несанкционированного доступа;
- периодический (1 раз в сугки) и/или по запросу автоматический сбор служебных параметров (изменения параметров базы данных, пропадание напряжения, коррекция даты и системного времени):
- передача результатов измерений в организации-участники оптового рынка электроэнергии в рамках согласованного регламента;
- обеспечение защиты оборудования, программного обеспечения и данных от несанкционированного доступа на физическом и программном уровне (установка паролей и т.п.);
- диагностика и мониторинг функционирования технических и программных средств АИИС КУЭ;

- конфигурирование и настройка параметров АИИС КУЭ;
- ведение системы единого времени в АИИС КУЭ (синхронизация часов АИИС КУЭ);

Принцип действия:

Первичные токи и напряжения преобразуются измерительными трансформаторами в аналоговые унифицированные сигналы, которые по проводным линиям связи поступают на измерительные входы счетчика электроэнергии. В счетчике мгновенные значения аналоговых сигналов преобразуются в цифровой сигнал. По мгновенным значениям силы электрического тока и напряжения в микропроцессоре счетчика вычисляются соответствующие мгновенные значения активной, реактивной и полной мощности без учета коэффициентов трансформации. Электрическая энергия, как интеграл по времени от мощности, вычисляется для интервалов времени 30 мин.

Цифровой сигнал с выходов счетчиков при помощи технических средств приемапередачи данных поступает на входы УСПД, где производится обработка измерительной информации (умножение на коэффициенты трансформации), сбор и хранение результатов измерений.

Сервер АИИС КУЭ при помощи программного обеспечения (ПО) осуществляет обработку измерительной информации (умножение на коэффициенты трансформации), формирование, хранение, оформление справочных и отчетных документов и последующая передачу информации в ОАО «АТС» и прочим заинтересованным организациям в рамках согласованного регламента.

Доступ к информации, хранящейся в базе данных сервера, осуществляется через АРМ диспетчера АИИС КУЭ.

АИИС КУЭ имеет систему обеспечения единого времени (СОЕВ). В СОЕВ входят часы устройства синхронизации времени УСВ-1, УСПД, сервера АИИС КУЭ и счетчиков. Для обеспечения единства измерений используется единое календарное время. В состав УСВ-1 входит GPS-приемник.

Сравнение показаний часов УСВ-1 и сервера АИИС КУЭ осуществляется один раз в час. Синхронизация часов УСВ-1 и сервера АИИС КУЭ осуществляется один раз в час вне зависимости от величины расхождения показаний часов УСВ-1 и сервера АИИС КУЭ.

Сравнение показаний часов УСПД и сервера АИИС КУЭ осуществляется при каждом сеансе связи, но не реже одного раза в сутки. Синхронизация часов УСПД и сервера АИИС КУЭ осуществляется при расхождении показаний часов УСПД и сервера АИИС КУЭ на величину более чем ± 2 с.

Сравнение показаний часов счетчиков и УСПД происходит при каждом обращении к счетчику, но не реже одного раза в 30 минут, синхронизация осуществляется при расхождении показаний часов счетчиков и УСПД на величину более чем ± 2 с.

Программное обеспечение

В АИИС КУЭ используется ПО «Пирамида 2000», в состав которого входят программы указанные в таблице 1. «Пирамида 2000» обеспечивает защиту программного обеспечения и измерительной информации паролями в соответствии с правами доступа. Средством защиты данных при передаче является кодирование данных, обеспечиваемое программными средствами «Пирамида 2000».

Таблица 1

Наименование программно-	Номер версии	Цифровой идентификатор программного	Алгоритм вычисления
го модуля (идентификацион-	программно-	обеспечения (контрольная сумма испол-	цифрового идентифи-
ное наименование про-	го обеспече-	няемого кода)	катора программного
граммного обеспечения)	ния		обеспечения
BLD.dll	8	58a40087ad0713aaa6 668df25428eff7	MD5
cachect.dll		7542c987fb7603c985 3c9alll0f6009d	
Re-gEvSet4tm.dll		3f0d215fc6l7e3d889 8099991c59d967	
caches 1.dll		b436dfc978711f46db 31bdb33f88e2bb	
cacheS10.dll		6802cbdeda81efea2b 17145ffl22efOO	
siconsl0.dll		4b0ea7c3e50a73099fc9908fc785cb45	
sicons50.dll		8d26c4d519704b0bc 075e73fDlb72118	
comrs232.dll		bec2e3615b5f50f2f94 5abc858f54aaf	
dbd.dll		feO5715defeec25eO62245268ea0916a	
ESClient_ex.dll		27c46d43bllca3920c f2434381239d5d	
filemap.dll		C8b9bb71f9faf20774 64df5bbd2fc8e	
plogin.dll		40cl0e827a64895c32 7e018dl2f75181	

ПО ИВК «Пирамида» не влияет на метрологические характеристики АИИС КУЭ. Уровень защиты программного обеспечения АИИС КУЭ от непреднамеренных и преднамеренных изменений соответствует уровню С по МИ 3286 - 2010.

Метрологические и технические характеристики

Состав измерительно-информационных комплексов АИИС КУЭ приведен в Таблице 2. Метрологические характеристики АИИС КУЭ приведены в Таблице 3.

Таблина 2

	ица 2 Наименование		Состав ИИК	(Вид элек-
№ ИИК	0 fg 0.4400						троэнер-
1	оовекта	TT	TH	Счетчик	ИВКЭ	ИВК	ГИИ
1	2	3	4	5	6	7	8
1	ПС ГПП 110/35/10 кВ ЭРУ – 10 кВ ячейка 8	ТЛК-10 Кл.т 0,5S Ктт=200/5 А Зав. № 09843 С Зав. № 09847 Госреестр № 9143-06	НАМИТ-10-2 УХЛ2 Кл.т 0,5 Ктн=10000/100 Зав. № 0144 Госреестр № 16687-02	СЭТ-4ТМ.03 Кл.т 0,2S/0,5 Зав. № 0104070197 Госреестр № 27524-04			Активная Реактивная
2	ПС ГПП 110/35/10 кВ ЭРУ – 10 кВ ячейка 15	ТЛК-10 Кл.т 0,5S Ктт=400/5 А Зав. № 10166 С Зав. № 10164 Госреестр № 9143-06	НАМИТ-10-2 УХЛ2 Кл.т 0,5 Ктн=10000/100 Зав. № 0140 Госреестр № 16687-02	СЭТ-4ТМ.03 Кл.т 0,2S/0,5 Зав. № 0105077098 Госреестр № 27524-04	H C70 :01944 № 28822-05	-Пирамида» ©: 29484-05	Активная Реактивная
3	ПС ГПП 110/35/10 кВ ЭРУ – 10 кВ ячейка 20	ТЛК-10 Кл.т 0,5S Ктт=400/5 А Зав. № 10428 С Зав. № 10254 Госреестр № 9143-06	НАМИТ-10-2 УХЛ2 Кл.т 0,5 Ктн=10000/100 Зав. № 0144 Госреестр № 16687-02	СЭТ-4ТМ.03 Кл.т 0,2S/0,5 Зав. № 0106070046 Госреестр № 27524-04	CUKOH C70 3ab. № 01944 Госрестр № 28822	ИВК «ИКМ-Пирамида» Госреестр №: 29484-05	Активная Реактивная
4	ПС ГПП 110/35/10 кВ ЭРУ – 10 кВ ячейка 34	ТЛК-10 Кл.т 0,5S Ктт=400/5 А Зав. № 01275 С Зав. № 01274 Госреестр № 9143-06	НАМИТ-10-2 УХЛ2 Кл.т 0,5 Ктн=10000/100 Зав. № 2019 Госреестр № 16687-02	СЭТ-4ТМ.03 Кл.т 0,2S/0,5 Зав. № 0106070041 Госреестр № 27524-04			Активная Реактивная

1	2	3	4	5	6	7	8
5	ПС ГПП 110/35/10 кВ ЭРУ – 10 кВ ячейка 41	ТЛК-10 Кл.т 0,5S Ктт=400/5 А Зав. № 01282 С Зав. № 06371 Госреестр № 9143-06	НАМИТ-10-2 УХЛ2 Кл.т 0,5 Ктн=10000/100 Зав. № 2164 Госреестр № 16687-02	СЭТ-4ТМ.03 Кл.т 0,2S/0,5 Зав. № 0106070109 Госреестр № 27524-04	DH C70 © 01944 Nº 28822-05	1-Пирамида» №: 29484-05	Активная Реактивная
6	ПС ГПП 110/35/10 кВ ЭРУ – 10 кВ ячейка 44	ТЛК-10 Кл.т 0,5S Ктт=400/5 А Зав. № 09844 С Зав. № 09840 Госреестр № 9143-06	НАМИТ-10-2 УХЛ2 Кл.т 0,5 Ктн=10000/100 Зав. № 2019 Госреестр № 16687-02	СЭТ-4ТМ.03 Кл.т 0,2S/0,5 Зав. № 0106070152 Госреестр № 27524-04	CMKÓH 3ab. № C Focpeec⊤p №	ИВК «ИКМ-П Госреестр №:	Активная Реактивная

Таблица 3

таолица 3						
		Пределы допускаемой относительной погрешности ИИК при измерении				
Номер ИИК	cosφ	активной электрической энергии в рабочих условиях эксплуатации δ, %				
		$I_{1(2)} \le I_{M3M} < I_{5\%}$	$I_{5\%} \le I_{_{\rm H3M}} < I_{20\%}$	$I_{20\%} \le I_{M3M} < I_{100\%}$	$I_{100 \%} \le I_{M3M} \le I_{120 \%}$	
	1,0	±1,9	±1,2	±1,0	±1,0	
1 – 6	0,9	±2,4	$\pm 1,4$	±1,2	±1,2	
(TT 0,5S; TH 0,5;	0,8	±2,9	±1,7	±1,4	±1,4	
Счетчик 0,2S)	0,7	±3,6	±2,1	±1,6	±1,6	
	0,5	±5,5	±3,0	±2,3	±2,3	
		Пределы допускаемой относительной погрешности ИИК при измерении				
П ИИИ	cosφ	реактивной электрической энергии в рабочих условиях				
Номер ИИК		эксплуатации δ, %				
		$I_{1(2)} \le I_{M3M} < I_{5\%}$	$I_{5\%} \le I_{_{\rm H3M}} < I_{20\%}$	$I_{20\%} \le I_{M3M} < I_{100\%}$	$I_{100 \%} \le I_{M3M} \le I_{120 \%}$	
1 – 6 (TT 0,5S; TH 0,5; Счетчик 0,5)	0,9	±8,1	±3,8	±2,7	±2,7	
	0,8	±7,5	±2,8	±2,0	±2,0	
	0,7	±7,2	±2,3	±1,7	±1,7	
	0,5	±7,0	±1,9	±1,4	±1,4	

Ход часов компонентов АИИС КУЭ не превышает ±5 с/сут.

Примечания:

- 1. Погрешность измерений $\delta_{1(2)\%P}$ и $\delta_{1(2)\%Q}$ для $\cos \phi = 1,0$ нормируется от $I_{1\%}$, а погрешность измерений $\delta_{1(2)\%P}$ и $\delta_{1(2)\%Q}$ для $\cos \phi < 1,0$ нормируется от $I_{2\%}$.
- 2. Характеристики относительной погрешности ИИК даны для измерения электроэнергии и средней мощности (30 мин.).
- 3. В качестве характеристик относительной погрешности указаны границы интервала, соответствующие вероятности 0,95.
- 4. Нормальные условия эксплуатации компонентов АИИС КУЭ:
 - напряжение от 0,98·Uном до 1,02·Uном;
 - сила тока от Іном до 1,2-Іном, соѕφ=0,9 инд;
 - температура окружающей среды: от плюс 15 до плюс 25 °C.
- 5. Рабочие условия эксплуатации компонентов АИИС КУЭ:
 - напряжение питающей сети 0,9 · Uном до 1,1 · Uном;
 - сила тока от 0,01 Іном до 1,2 Іном;

температура окружающей среды:

- для счетчиков электроэнергии от плюс 5 до плюс 35 °C;
- для трансформаторов тока по ГОСТ 7746-2001;
- для трансформаторов напряжения по ГОСТ 1983-2001.
- 6. Трансформаторы тока по ГОСТ 7746-2001, трансформаторы напряжения по ГОСТ 1983-2001, счетчики электроэнергии в режиме измерения активной электроэнергии по ГОСТ 30206-94, в режиме измерения реактивной электроэнергии по ГОСТ 26035-83;
- 7. Допускается замена измерительных трансформаторов и счетчиков электроэнергии на аналогичные (см. п. 6 Примечания) утвержденных типов с метрологическими характеристиками не хуже, чем у перечисленных в Таблице 2. Замена оформляется актом в установленном на объекте порядке. Акт хранится совместно с настоящим описанием типа АИИС КУЭ как его неотъемлемая часть.

Параметры надежности применяемых в АИИС КУЭ измерительных компонентов:

- счетчики электроэнергии СЭТ-4ТМ.03 среднее время наработки на отказ не менее 90000 часов;
- УСВ-1 среднее время наработки на отказ не менее 35000 часов;
- УСПД СИКОН С70 среднее время наработки на отказ не менее 70000 часов;

Среднее время восстановления, при выходе из строя оборудования:

- для счетчика Tв ≤ 2 часа;
- для УСПД Тв ≤ 2 часа;
- для сервера Тв ≤ 1 час;
- для компьютера APM Тв ≤ 1 час;
- для модема Тв ≤ 1 час.

Защита технических и программных средств АИИС КУЭ от несанкционированного доступа:

- клеммники вторичных цепей измерительных трансформаторов имеют устройства для пломбирования;
- панели подключения к электрическим интерфейсам счетчиков защищены механическими пломбами;
- наличие защиты на программном уровне возможность установки многоуровневых паролей на счетчиках, УССВ, УСПД, сервере, APM;
- организация доступа к информации ИВК посредством паролей обеспечивает идентификацию пользователей и эксплуатационного персонала;
- защита результатов измерений при передаче.

Наличие фиксации в журнале событий счетчика следующих событий

- фактов параметрирования счетчика;
- фактов пропадания напряжения;
- фактов коррекции времени.

в журнале УСПД:

- параметрирования;
- пропадания напряжения;
- - коррекции времени в счетчике и УСПД;
- - пропадание и восстановление связи со счетчиком

Возможность коррекции времени в:

- счетчиках (функция автоматизирована);
- УСПД(функция автоматизирована);
- ИВК (функция автоматизирована).

Глубина хранения информации:

- счетчики электроэнергии СЭТ-4ТМ.03 – тридцатиминутный профиль нагрузки в двух направлениях – не менее 113,7 суток; при отключении питания – не менее 10 лет;

- УСПД суточные данные о тридцатиминутных приращениях электроэнергии по каждому каналу и электроэнергии потребленной за месяц по каждому каналу не менее 45 суток; при отключении питания не менее 5 лет;
- ИВК хранение результатов измерений и информации о состоянии средства измерений не менее 3,5 лет.

Знак утверждения типа

Знак утверждения типа наносится на титульные листы эксплуатационной документации АИИС КУЭ типографским способом.

Комплектность средства измерений

Комплектность АИИС КУЭ приведена в таблице 4

	_			4
- 10	ลก	ΠИ	пa	4

Наименование	Тип	Кол.
Трансформатор тока	ТЛК-10	12
Трансформатор напряжения	НАМИТ-10-2 УХЛ2	6
Счетчик электроэнергии	CЭT-4TM.03	6
УСПД	СИКОН С70	1
Устройство синхронизации времени	УСВ-1	1
Источник бесперебойного питания	IPPON 600 VA	2
Сервер АИИС КУЭ ОАО «Центросвармаш»	ИВК «ИКМ-Пирамида»	1
Сервер БД	ИВК «ИКМ-Пирамида»	1
Коммутатор	MOXA EDS-208	1
Модем	AnCom ST/A000C/310/D15	1
Методика поверки	MΠ 1820/550-2014	1
Паспорт-формуляр	САИМ 425210.039.000 ПФ	1

Поверка

осуществляется по документу МП 1820/550-2014 «ГСИ. Система автоматизированная информационно-измерительная коммерческого учета электроэнергии (АИИС КУЭ) ОАО «Центросвармаш». Методика поверки», утвержденному ГЦИ СИ ФБУ «Ростест-Москва» в мае 2014 года.

Основные средства поверки:

- трансформаторов тока по ГОСТ 8.217-2003;
- трансформаторов напряжения по ГОСТ 8.216-2011;
- счетчиков СЭТ-4ТМ.03 по методике поверки ИЛГШ.411152.124 РЭ1, согласованной ГЦИ СИ ФГУ «Нижегородский ЦСМ» 10.09.2004;
- УСПД СИКОН С70 по методике поверки по методике ВЛСТ 220.00.000 И1, утвержденной ГЦИ СИ ВНИИМС в 2005 г.;
- ИКМ «Пирамида» по документу «Комплексы информационно-вычислительные ИКМ «Пирамида». Методика поверки» ВЛСТ 230.00.000 И1, утвержденному ГЦИ СИ ФГУП «ВНИИМС» в 2005 г.;
- УСВ-1 по документу «Устройство синхронизации времени УСВ-1. Методика поверки 221 00.000МП» утверждённым ГЦИ СИ ФГУП ВНИИФТРИ в 2004 г.;

Радиочасы МИР РЧ-01, принимающие сигналы спутниковой навигационной системы Global Positioning System (GPS) (Госреестр № 27008-04);

Термометр по ГОСТ 28498-90, диапазон измерений от минус 40 до плюс 50° С, цена деления 1° С.

Сведения о методиках (методах) измерений

Методика измерений приведена в документе: «Методика (методы) измерений количества электрической энергии с использованием автоматизированной информационно-измерительной системы коммерческого учета электроэнергии (АИИС КУЭ) ОАО «Центросвармаш».

Свидетельство об аттестации методики (методов) измерений № 1356/550-01.00229-2014 от 20.03.2014 г.

Нормативные документы, устанавливающие требования к АИИС КУЭ ОАО «Центросвармаш»

- 1 ГОСТ Р 8.596-2002 ГСИ. Метрологическое обеспечение измерительных систем. Основные положения.
- 2 ГОСТ 22261-94 Средства измерений электрических и магнитных величин. Общие технические условия.
- 3 ГОСТ 34.601-90 Информационная технология. Комплекс стандартов на автоматизированные системы. Автоматизированные системы. Стадии создания.
 - 4 ГОСТ 7746-2001 Трансформаторы тока. Общие технические условия.
 - 5 ГОСТ 1983-2001 Трансформаторы напряжения. Общие технические условия.

Рекомендации по областям применения в сфере государственного регулирования обеспечения единства измерений

- при осуществлении торговли и товарообменных операций.

Изготовитель

«ЭНЕРГОПРОМ»

Адрес: 602267, Владимирская обл., г. Муром, ул. Лакина, д. 26

тел/факс (49234) 3-62-31, 3-04-33

Испытательный центр

Государственный центр испытаний средств измерений Федеральное бюджетное учреждение «Государственный региональный центр стандартизации, метрологии и испытаний в г. Москве» (ГЦИ СИ ФБУ «Ростест-Москва»).

117418 г. Москва, Нахимовский проспект, 31

Тел.(495) 544-00-00, 668-27-40, (499) 129-19-11 Факс (499) 124-99-96

Аттестат аккредитации ГЦИ СИ ФБУ «Ростест-Москва» по проведению испытаний средств измерений в целях утверждения типа № 30010-10 от 15.03.2010 г.

Заместитель			
Руководителя Федерального агент-			
ства по техническому регулирова-			
нию и метрологии			Ф.В. Булыгин
	3.6		• • • •
	М.п.	«»	2014 г.