ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Машины испытательные универсальные STB

Назначение средства измерений

Машины испытательные универсальные STB (далее машины) предназначены для измерения силы при испытаниях образцов материалов на растяжение, сжатие и изгиб.

Описание средства измерений

Конструктивно машины состоят из корпуса, привода, силоизмерительного тензорезисторного датчика (далее датчик), захватов для крепления испытываемого образца, электрооборудования и персонального компьютера

Корпус представляет собой жесткую несущую раму с двумя стойками, предназначенную для крепления всех элементов машины

Общий вид машин представлен на рисунке 1.

Рисунок 1 – Общий вид

Принцип действия машин основан на преобразовании датчиком нагрузки, приложенной к испытываемому образцу, в аналоговый электрический сигнал, изменяющийся пропорционально этой нагрузке. Приложенная нагрузка, создаваемая машинами, деформирует испытуемый образец, при этом производится измерение значения величины этой нагрузки и соответствующей ей степени деформации образца.

Машины содержат два измерительных канала: канал измерения нагрузки, включающий в себя силоизмерительный тензометрический датчик и канал измерения перемещения подвижной траверсы, включающий в себя оптоэлектронный преобразователь угловых перемещений (датчик перемещения). Электрические сигналы от датчиков подаются на блок аналоговоцифрового преобразователя, где аналоговый сигнал преобразовывается в цифровой код, который передается в микропроцессорный прибор, размещенный в корпусе машины. Далее,

измерительная информация выводится на дисплей прибора или передается на ПК (ПК может быть расположен на корпусе основания машины или в отдельном корпусе).

Модификации машин отличаются наибольшим пределом нагрузки, массой и габаритными размерами. Буквы S и L в обозначении модификаций обозначают высоту рамы (S-short, высота рамы 1050 мм, L-large, высота рамы 1450 мм).

На маркировочной табличке машины указывают:

- обозначение машины;
- знак утверждения типа;
- заводской номер;
- год и месяц изготовления.

Программное обеспечение

Программное обеспечение (далее – ΠO) машин является встроенным и полностью метрологически значимым.

Идентификационным признаком ПО служит номер версии, который отображается на экране компьютера персонального, подключенного к машине через интерфейс RS-232, при включении компьютера машины в сеть через адаптеры.

Переход в сервисный режим, позволяющий изменять ПО и настройки весов, возможен только сервисным инженером на специальном оборудовании. Вскрытие корпуса весов не дает возможности получить доступ к электронным настройкам и ПО, поэтому пломбирования корпуса не требуется.

Уровень защиты ΠO от непреднамеренных и преднамеренных воздействии в соответствии с M M 3286-2010- «A».

Таблица 1

Наименование программного обеспечения	Идентифика- ционное на- именование программного обеспечения	Номер версии (идентифика- ционный но- мер) программного обеспечения	Цифровой идентификатор программного обеспечения (контрольная сумма исполняемого кода)	Алгоритм вычисления цифрового идентификатора программного обеспечения
Машины	TACT	1.1.0.XXXX	f86dd277f2c1173422 9b11697dc7ce09	MD5

Метрологические и технические характеристики

Таблица 2

Модель	STB-1225L	STB-1225S
Наибольшая предельная на- грузка, кН	2,:	5
Наименьшая предельная на- грузка, кН	0,005	
Диапазон измерений пере-	1000	600
мещения активного захвата, мм		
Диапазон регулирования	0,05 -	1000
скорости перемещения активного захвата, мм/мин		
Пределы допускаемой по-	±1,	,0
грешности измерения на-		
грузки (усилий) при прямом		

Модель	STB-1225L	STB-1225S	
ходе, %, от измеряемой на-			
грузки			
Габаритные размеры, мм, не	470x335x1450	470x335x1050	
более			
Масса, кг, не более	56	43	
Электрическое питание – от			
сети переменного тока с па-			
раметрами:			
напряжение, В	от 187 до 242		
частота, Гц	от 49 до 51		
Диапазон рабочих темпера-	O _T +5)	цо + 40	
тур, °С			
Относительная влажность, %	20-	-80	

Знак утверждения типа

Знак утверждения типа наносится на титульный лист руководства по эксплуатации и маркировочную табличку, расположенную на корпусе машины.

Комплектность средства измерений

- 1. Машина
 1 шт.

 2. Адаптер сетевого питания
 1 шт.

Поверка

Осуществляется в соответствии с документом МП 57870-14 «Машины испытательные универсальные STB. Методика поверки», утвержденным Φ ГУП «ВНИИМС» в мае 2014 г.

Основные средства поверки:

— динамометры эталонные переносные 2-го разряда, основная погрешность \pm 0,12 % по ГОСТ 8.663-2009.

Идентификационные данные и способ идентификации программного обеспечения представлены в руководстве по эксплуатации в разделе 4.

Сведения о методиках (методах) измерений

Измерения на машинах проводится согласно разделу 5 «Виды испытаний» документа «Машины испытательные универсальные STB. Руководство по эксплуатации».

Нормативные и технические документы, устанавливающие требования к машинам испытательным универсальным STB

- 1. ГОСТ 8.663-2009 «Государственная система обеспечения единства измерений. Государственная поверочная схема для средств измерений силы».
- 2. Техническая документация фирмы «A&D Company, Limited», Япония.

Рекомендации по областям применения в сфере государственного регулирования обеспечения единства измерений

При выполнении работ по оценке соответствия промышленной продукции и продукции других видов, а также иных объектов установленным законодательством Российской Федерации обязательным требованиям.

Изготовитель

Фирма «A&D SCALES CO., LTD», Республика Корея 191, Inseok-ro, Deoksan-myeon, Jincheon-gun, Chungcheongbuk-do, Korea

Заявитель

Общество с ограниченной ответственностью «ЭЙ энд ДИ РУС» (ООО «ЭЙ энд ДИ РУС»)

121357, г. Москва, ул. Верейская, д. 17. Тел/факс.: (495) 937 33 44 (495) 937 55 66

E-mail: info@and-rus.ru

Испытательный центр

Федеральное государственное унитарное предприятие «Всероссийский научноисследовательский институт метрологической службы» (ФГУП «ВНИИМС»)

119361, г. Москва, ул. Озерная, д. 46.

Тел.: (495) 437 5577, факс: (495) 437 5666.

E-mail: Office@vniims.ru

Аттестат аккредитации Φ ГУП «ВНИИМС» по проведению испытаний средств измерений в целях утверждения типа № 30004-13 от 26.07.2013 г.

М.п.

Заместитель Руководителя Федерального агентства по техническому регулированию и метрологии

Ф.В. Булыгин

	Ф.Б. Булыгин
«»	2014 г.