ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Осциллографы цифровые запоминающие RTE1022, RTE1024, RTE1032, RTE1034, RTE1052, RTE1054, RTE1102, RTE1104

Назначение средства измерений

Осциллографы цифровые запоминающие RTE1022, RTE1024, RTE1032, RTE1034, RTE1052, RTE1054, RTE1102, RTE1104 предназначены для исследования формы и измерений амплитудных и временных параметров электрических сигналов.

Описание средства измерений

Принцип действия осциллографов цифровых запоминающих RTE1022, RTE1024, RTE1032, RTE1034, RTE1052, RTE1054, RTE1102, RTE1104 основан на высокоскоростном аналогово-цифровом преобразовании входного сигнала в реальном времени, предварительной аппаратной обработке сигнала и записи сигнала в память осциллографа. В результате обработки сигнала, а также в соответствии с настройками осциллографа выделяется часть сигнала, предназначенная для отображения на экране.

Осциллографы цифровые запоминающие RTE1022, RTE1024, RTE1032, RTE1034, RTE1052, RTE1054, RTE1054, RTE1104 позволяют проводить автоматические и курсорные измерения амплитудно-временных параметров сигнала, математическую обработку сигналов, статистическую обработку результатов измерений, проверку цифровых сигналов с помощью масок, быстрое преобразование Фурье и измерение параметров сигнала в частотной области с выводом результатов измерений на экран, опционально декодирование и анализ последовательных протоколов передачи данных I2C/SPI, UART/RS232, CAN/LIN, FlexRay. Осциллографы обеспечивают управление всеми режимами работы и параметрами как вручную, так и дистанционно от внешнего компьютера, автоматическое тестирование и самодиагностику.

Конструктивно осциллографы цифровые запоминающие RTE1022, RTE1024, RTE1032, RTE1034, RTE1052, RTE1054, RTE1102, RTE1104 выполнены в виде настольного моноблочного прибора. Для организации связи с внешними устройствами применяются интерфейсы LAN, USB 2.0 и опционально GPIB.

Модификации осциллографов цифровых запоминающих RTE1022, RTE1024, RTE1032, RTE1034, RTE1052, RTE1054, RTE1102, RTE1104 отличаются количеством входных каналов и полосой пропускания.

Осциллографы цифровые запоминающие RTE1022, RTE1024, RTE1032, RTE1034, RTE1052, RTE1054, RTE1102, RTE1104 имеют следующие опции:

RTE-B10 – интерфейс GPIB;

RTE-K1 – анализ протокола I2C/SPI;

RTE-K2 – анализ протокола UART/RS232;

RTE-K3 – анализ протокола CAN/LIN;

RTE-K4 – анализ протокола FlexRay.

Общий вид осциллографов цифровых запоминающих RTE1022, RTE1024, RTE1032, RTE1034, RTE1052, RTE1054, RTE1102, RTE1104 и обозначение места нанесения знака утверждения типа приведены на рисунке 1.

Схема пломбировки от несанкционированного доступа приведена на рисунке 2.

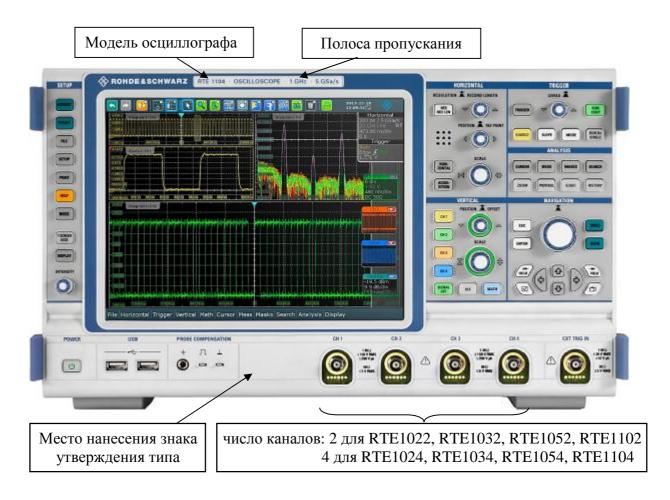


Рисунок 1 - Общий вид средства измерений

Рисунок 2 - Схема пломбировки от несанкционированного доступа (А)

Программное обеспечение

Программное обеспечение «RTE Firmware» предназначено только для работы с осциллографами цифровыми запоминающими RTE1022, RTE1024, RTE1032, RTE1034, RTE1052, RTE1054, RTE1102, RTE1104 и не может быть использовано отдельно от измерительно-вычислительной платформы этих приборов.

Метрологически значимая часть ПО и измеренные данные не требуют специальных средств защиты от преднамеренных и непреднамеренных изменений. Уровень защиты программного обеспечения «низкий» в соответствии с Р 50.2.077-2014.

Идентификационные данные метрологически значимой части ПО осциллографов цифровых запоминающих RTE1022, RTE1024, RTE1032, RTE1034, RTE1052, RTE1054, RTE1102, RTE1104 приведены в таблице 1.

Таблица 1 - Идентификационные данные программного обеспечения

Идентификационные данные (признаки)	Значение
Идентификационное наименование ПО	RTE Firmware
Номер версии (идентификационный номер) ПО	не ниже 2.22.1.0
Цифровой идентификатор ПО	-

Метрологические и технические характеристики

Таблица 2 – Метрологические характеристики

таолица 2 – Метрологические х	1 1	
Наименование характеристики		Значение
1		2
Число каналов	RTE1022, RTE1032,	2
	RTE1052, RTE1102	2
THESIO Ranasios	RTE1024, RTE1034,	4
	RTE1054, RTE1104	
Разрядность АЦП, бит		8
Максимальная частота дискретизации на каждый		5
канал, ГГц		
	RTE1022, RTE1032,	5·10' (на 2-х каналах)
Объем памяти на каждый канал, количество	RTE1052, RTE1102	10 ⁸ (на 1-м канале)
	RTE1024, RTE1034,	5.10^{7} (на 4-х каналах)
отсчетов	RTE1024, RTE1034,	10 ⁸ (на 2-х каналах)
	RIE103 I, RIE110 I	2·10 ⁸ (на 1-м канале)
Подоло продулжания при	RTE1022, RTE1024	от 0 до 200
Полоса пропускания при входном сопротивлении	RTE1032, RTE1034	от 0 до 350
50 Ом, МГц	RTE1052, RTE1054	от 0 до 500
50 OM, 1411 H	RTE1102, RTE1104	от 0 до 1000
	RTE1022, RTE1024	1,75
Время нарастания переходной	RTE1032, RTE1034	1
характеристики, нс, не более	RTE1052, RTE1054	0,7
	RTE1102, RTE1104	0,35
Диапазон значений коэффициента развертки, с/дел		от 5·10 ⁻¹¹ до 5000
Пределы допускаемой относительной погрешности по		$\pm 10^{-5}$
частоте внутреннего опорного генератора		±10

Продолжение таблицы 2

	продолжение полицы 2		
	1	2	
Диапазон значений коэффициента отклонения (КО), в	R = 50 Ом	от 0,001 до 1	
зависимости от входного сопротивления R, В/дел	R = 1 МОм	от 0,001 до 10	
Пределы допускаемой относительной	KO > 0,005 В/дел	±1,5	
погрешности установки коэффициента отклонения, δКО, %	КО ≤ 0,005 В/дел	±2,0	
Диапазон установки постоянного смещения U_{cm} , в зависимости от входного сопротивления R и коэффициента отклонения (KO), B	$R = 50 \text{ OM}$ $KO > 0.2 \text{ B/дел}$ $0.05 \text{ B/дел} > KO \le 0.2 \text{ B/дел}$ $KO \le 0.05 \text{ B/дел}$	±10 ±(4,9 - 5·KO) ±(1,6 - 5·KO)	
	$R = 1 \ MOм \ KO > 0,9 \ B/дел \ 0,08 \ B/дел > KO \le 0,9 \ B/дел \ KO \le 0,08 \ B/дел$	±(129,5 - 5·KO) ±(12,4 - 5·KO) ±(1,15 - 5·KO)	
Пределы допускаемой абсолютной погрешности установки постоянного смещения, В		$\pm (0.005 \times U_{cm} + 0.15 \times CO + 0.001)$	
Примечание: КО – коэффициент отклон R – входное сопротивлени U _{см} – постоянное смещени	ie		

Таблица 3 – Основные технические характеристики

Наименование характеристики	1	
1	2	
Источники синхронизации	входы каналов, вход внешней синхронизации	
Режимы запуска	автоматический, ждущий, однократный, n-кратный	
Виды запуска	по фронту, по спаду, по фронту и спаду, по глитчу, длительности импульса, по диапазону напряжения (по окну), по задержке, по временному интервалу, по крутизне сигнала, по кодовой последовательности, по логической комбинации в нескольких каналах, по шаблону последовательности данных, ТВ строке/кадру	
Минимальный уровень синхронизации от входов каналов осциллографа, дел, не более	0,1	

Продолжение таблицы 3

продолжение таблицы 3	
1	2
Напряжение питания от сети переменного тока	от 100 до 240
частотой 50 или 60 Гц, В	
Потребляемая мощность, Вт, не более	300
Габаритные размеры (ширина × высота × глубина),	
мм, не более	427´249´204
Масса (без опций и аксессуаров), кг, не более	8,8
Рабочие условия эксплуатации:	
- температура окружающей среды, °С	от 0 до +45
- относительная влажность воздуха при температуре	
40 °C, %	до 85
Условия хранения и транспортирования:	
- температура окружающей среды, °С	от -40 до +70
Время прогрева, минут	15
Средняя наработка на отказ, лет	10

Знак утверждения типа

наносится на лицевую панель осциллографов цифровых запоминающих RTE1022, RTE1024, RTE1032, RTE1034, RTE1052, RTE1054, RTE1102, RTE1104 методом наклейки в соответствии с рисунком 1 и на титульный лист руководства по эксплуатации типографским способом.

Комплектность средства измерений

Таблица 4 – Комплектность средства измерений

	ть средства измерении		
Наименование	Обозначение Количество		
Осциллограф цифровой	RTE1022, RTE1024, RTE1032, RTE1034,		
запоминающий	RTE1052, RTE1054, RTE1102, RTE1104	1 шт.	
Опции	RTE-B10 – интерфейс GPIB	по отдельному	
	RTE-K1 – анализ протокола I2C/SPI	заказу	
	RTE-K2 – анализ протокола UART/RS232		
	RTE-K3 – анализ протокола CAN/LIN		
	RTE-K4 – анализ протокола FlexRay		
Кабель питания	-	1 шт.	
Пассивные пробники	-	по количеству	
		каналов	
Руководство по	-	1 экз.	
эксплуатации			
Методика поверки	MΠ PT 2101-2014	1 экз.	

Поверка

осуществляется по документу МП РТ 2101–2014 «Осциллографы цифровые запоминающие RTE1022, RTE1024, RTE1032, RTE1034, RTE1052, RTE1054, RTE1102, RTE1104. Методика поверки», утвержденному ФБУ «Ростест-Москва» 29 апреля 2014 года.

Основные средства поверки:

- калибратор осциллографов Fluke 9500B (регистрационный номер в Федеральном информационном фонде 30374-13).

Допускается применение аналогичных средств поверки, обеспечивающих определение метрологических характеристик поверяемых СИ с требуемой точностью.

Знак поверки наносится на свидетельство о поверке.

Сведения о методиках (методах) измерений

приведены в эксплуатационном документе.

Нормативные и технические документы, устанавливающие требования к осциллографам цифровым запоминающим RTE1022, RTE1024, RTE1032, RTE1034, RTE1052, RTE1054, RTE1104

ГОСТ Р 8.761-2011 ГСИ. Государственная поверочная схема для средств измерений импульсного электрического напряжения

Техническая документация фирмы "Rohde & Schwarz GmbH & Co. KG", Германия

Изготовитель

Фирма "Rohde & Schwarz zavod Vimperk, s.r.o", Чехия Адрес: Spidrova 49,38501 Vimperk, Czech Republic

Телефон: +420 388 452 109

Web-сайт: https://www.rohde-schwarz.com
E-mail: customersupport@rohde-schwarz.com

Заявитель

Общество с ограниченной ответственностью «РОДЕ и ШВАРЦ РУС»

(ООО «РОДЕ и ШВАРЦ РУС»)

ИНН 7710557825

Адрес: 115093, г. Москва, Нахимовский пр-кт, д. 58, комн. 16, этаж 6

Телефон: +7 (495) 981-35-60 Факс: +7 (495) 981-35-65

Web-сайт: https://www.rohde-schwarz.com/ru E-mail: sales.russia@rohde-schwarz.com

Испытательный центр

Федеральное бюджетное учреждение «Государственный региональный центр стандартизации, метрологии и испытаний в г. Москве и Московской области»

(ФБУ «Ростест-Москва»)

Адрес: 117418, г. Москва, Нахимовский проспект, д. 31

Телефон: +7 (495) 544-00-00 Web-сайт: http://www.rostest.ru

Регистрационный номер RA.RU.310639 в Реестре аккредитованный лиц в области обеспечения единства измерений Росаккредитации.

Заместитель Руководителя Федерального агентства по техническому регулированию и метрологии

A.B.	Кι	лешов

М.п. «___ » _____ 2020 г.