ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Система автоматизированная информационно-измерительная коммерческого учета электроэнергии (АИИС КУЭ) ООО «Волгодонский комбинат древесных плит»

Назначение средства измерений

Система автоматизированная информационно-измерительная коммерческого учета электроэнергии (АИИС КУЭ) ООО «Волгодонский комбинат древесных плит» (далее – АИИС КУЭ) предназначена для измерений активной и реактивной электроэнергии и мощности, сбора, обработки, хранения, формирования отчётных документов и передачи полученной информации.

Описание средства измерений

АИИС КУЭ представляет собой многофункциональную, многоуровневую автоматизированную систему с централизованным управлением и распределённой функцией измерений.

АИИС КУЭ включает в себя следующие уровни:

1-й уровень – измерительно-информационные комплексы (ИИК), включающие в себя измерительные трансформаторы тока (далее – ТТ) по ГОСТ 7746-2001, измерительные трансформаторы напряжения (далее – ТН) по ГОСТ 1983-2001 и счетчики активной и реактивной электрической энергии в режиме измерений активной электрической энергии по ГОСТ 30206-94, и в режиме измерений реактивной электрической энергии по ГОСТ 26035-83, вторичные измерительные цепи и технические средства приема-передачи данных. Метрологические и технические характеристики измерительных компонентов АИИС КУЭ приведены в таблице 2.

2-й уровень – информационно-вычислительный комплекс (ИВК) включает в себя сервер сбора и баз данных (далее – сервер) с программным обеспечением (ПО) «АльфаЦЕНТР», каналообразующую аппаратуру, технические средства для организации локальной вычислительной сети и разграничения прав доступа к информации и устройство синхронизации системного времени (УССВ) типа 35 HVS, расположенные в ОАО «ЭК «Восток».

Измерительные каналы (далее - ИК) состоят из двух уровней АИИС КУЭ.

Первичные токи и напряжения трансформируются измерительными трансформаторами в аналоговые сигналы низкого уровня, которые по проводным линиям связи поступают на соответствующие входы электронного счетчика электрической энергии. В счетчике мгновенные значения аналоговых сигналов преобразуются в цифровой сигнал. По мгновенным значениям силы электрического тока и напряжения в микропроцессоре счетчика вычисляются мгновенные значения активной и полной мощности, которые усредняются за период 0,02 с. Средняя за период реактивная мощность вычисляется по средним за период значениям активной и полной мошности.

Электрическая энергия, как интеграл по времени от средней за период 0,02 с мощности, вычисляется для интервалов времени 30 мин.

Средняя активная (реактивная) электрическая мощность вычисляется как среднее значение вычисленных мгновенных значений мощности на интервале времени усреднения 30 мин.

Цифровой сигнал с выходов счетчиков по проводным линиям связи интерфейса RS-485 поступает на GSM-модемы, далее по сотовым каналам связи стандарта GSM – на верхний уровень системы. На верхнем – втором уровне системы выполняется обработка измерительной информации, в частности, вычисление электрической энергии и мощности с учетом коэффициен-

тов трансформации ТТ и ТН, формирование и хранение поступающей информации, оформление отчетных документов. Передача информации в ПАК ОАО «АТС» за подписью ЭЦП субъекта ОРЭ и другие смежные субъекты ОРЭ осуществляется по каналу связи с протоколом ТСР/IP сети Internet в виде хml-файлов формата 80020 в соответствии с приложением 11.1.1 «Формат и регламент предоставления результатов измерений, состояния средств и объектов измерений в ОАО «АТС», ОАО «СО ЕЭС» и смежным субъектам» к Положению о порядке получения статуса субъекта оптового рынка и ведения реестра субъектов оптового рынка электрической энергии и мощности.

АИИС КУЭ имеет систему обеспечения единого времени (СОЕВ), которая охватывает уровни ИИК и ИВК. АИИС КУЭ оснащена устройством синхронизации системного времени УССВ, синхронизирующим часы измерительных компонентов системы по сигналам проверки времени, получаемым от GPS-приемника. Часы сервера синхронизированы с УССВ, сличение ежесекундное, коррекция часов сервера происходит при обнаружении расхождения ± 0.5 с. Синхронизация часов счетчиков с часами сервера производится во время сеанса связи со счетчиками. Корректировка часов счётчиков осуществляется при расхождении показаний часов счётчика и сервера ± 1 с, но не чаще одного раза в сутки. Допускаемая нестабильность времени счетчиков в нормальных условиях ± 3 с/сут. Задержки в каналах связи составляют не более 0.2 с.

Погрешность часов компонентов АИИС КУЭ не превышает ±5 с.

Журналы событий счетчика электроэнергии и сервера отражают: время (дата, часы, минуты) коррекции часов указанных устройств и расхождение времени в секундах корректируемого и корректирующего устройств в момент непосредственно предшествующий корректировке.

Программное обеспечение

В АИИС КУЭ используется ПО «АльфаЦЕНТР», в состав которого входят программы, указанные в таблице 1. ПО «АльфаЦЕНТР» обеспечивает защиту программного обеспечения и измерительной информации паролями в соответствии с правами доступа. Средством защиты данных при передаче является кодирование данных, обеспечиваемое ПО «АльфаЦЕНТР».

Таблица 1 — Идентификационные данные ПО «АльфаЦЕНТР»

Наиме- нование про- грамм- ного обеспе- чения	Наименование программного модуля (идентификационное наименование программного обеспечения)	Наименова- ние файла	Номер версии программного обеспечения	Цифровой идентификатор программного обеспечения (контрольная сумма исполняемого кода)	Алгоритм вычисления цифрового идентификатора программного обеспечения
1	2	3	4	5	6
ПО «Альфа ЦЕНТР»	Программа – планировщик опроса и передачи данных	Amrserver.exe		25b98c6cd394aa17d f4bfc8badd85636	
	Драйвер ручно- го опроса счет- чиков и УСПД	Amrc.exe	14.03.01.02	498ca4f23e7d403af5 9f79502303c5ea	MD5
	Драйвер авто- матического оп- роса счетчиков и УСПД	Ameta.exe		bf236ed4b9b88dc9e 006042e16d394d1	
	Драйвер работы с БД	Cdbora2.dll		d696def8639e23a10 e1898a466b8bd2f	

Продолжение таблицы 1

1	2	3	4	5	6	
ПО «Альфа ЦЕНТР»	Библиотека шифрования пароля счетчиков	Encryptdll.dll		0939ce05295fbcbbb a400eeae8d0572c		
	Библиотека со- общений плани- ровщика опро- сов	Alphamess.dll	14.03.01.02	b8c331abb5e344441 70eee9317d635cd	MD5	

Комплексы измерительно-вычислительные для учёта электрической энергии «АльфаЦЕНТР», в состав которых входит ПО «АльфаЦЕНТР», внесены в Государственный реестр средств измерений под регистрационным номером № 44595-10.

Пределы допускаемой дополнительной абсолютной погрешности по электроэнергии, получаемой за счет математической обработки измерительной информации, поступающей от счетчиков, составляют 1 единицу младшего разряда измеренного значения.

Пределы допускаемых относительных погрешностей по активной и реактивной электроэнергии, а также для разных временных (тарифных) зон не зависят от способов передачи измерительной информации и определяются классами точности применяемых счетчиков электрической энергии и измерительных трансформаторов.

Метрологические характеристики ИК АИИС КУЭ, указанные в таблице 2, нормированы с учетом ПО.

Уровень защиты ПО от непреднамеренных и преднамеренных изменений – «высокий» в соответствии с Р 50.2.077-2014.

Метрологические и технические характеристики

Состав 1-го и 2-го уровней измерительных каналов и их метрологические характеристики приведены в таблице 2

Таблица 2 — Состав 1-го и 2-го уровней ИК АИИС КУЭ ООО «Волгодонский комбинат

древесных плит» и их основные метрологические характеристики

древесных плит» и их основные метрологические характеристики									
Номер точки изме-		Измерительные компоненты			Вид элек-	Метрологические характеристики ИК			
рений- на од- ноли- нейной схеме		TT	ТН	Счетчик электрической энергии	ИВК	тро- энер- гии	Основ- ная по- греш- ность, %	По- грешнос ть в ра- бочих услови-	
1	2	3	4	5	6	7	8	ях 9 %	
1	ПС 110/10/6 кВ «Приморская», ОРУ-110 кВ, Ввод 110 кВ Т-1	ТФЗМ 110Б-III Кл.т. 0,5 1000/5 Зав. № 2532 Зав. № 2486 Зав. № 2539	НКФ-110-57 Кл.т. 0,5 110000:√3/100:√3 Зав. № 18319 Зав. № 19229 Зав. № 19767	СЭТ-4ТМ.02.2 Кл.т. 0,5S/0,5 Зав. № 04030024	HP Pro- Liant DL380 G4 3ab. № GB8526 D3D9	Ак- тивная Реак- тивная	± 1,3 ± 2,3	± 3,2 ± 4,6	
2	ПС 110/10/6 кВ «Приморская», ОРУ-110 кВ, Ввод 110 кВ Т-2	ТФЗМ 110Б-III Кл.т. 0,5 1000/5 Зав. № 2513 Зав. № 2480 Зав. № 2474	НКФ-110-57 Кл.т. 0,5 110000:√3/100:√3 Зав. № 19861 Зав. № 19756 Зав. № 18407	СЭТ-4ТМ.02.2 Кл.т. 0,5S/0,5 Зав. № 05030088		HP Pro-	Ак- тивная Реак- тивная	± 1,3 ± 2,3	± 3,2 ± 4,6
3	ПС 110/10/6 кВ «Приморская», 3РУ-10 кВ, яч.№51 «Шлюз-14»	ТОЛ-10 Кл.т. 0,5 300/5 Зав. № 32303 Зав. № 32332	НТМИ-10-66 Кл.т. 0,5 10000/100 Зав. № 536	СЭТ-4ТМ.02.2 Кл.т. 0,5S/0,5 Зав. № 04030091		Ак- тивная Реак- тивная	± 1,3 ± 2,3	± 3,2 ± 4,6	
4	ТП-14 6/0,4 кВ, РУ-0,4 кВ, ру- бильник Р-1	Т-0,66 Кл.т. 0,5 100/5 Зав. № 095095 Зав. № 164219 Зав. № 086255	_	СЭТ-4ТМ.02.2 Кл.т. 0,5S/0,5 Зав. № 07030001		Ак- тивная Реак- тивная	± 1,0 ± 1,9	± 3,1 ± 4,4	
5	ТП-4 6/0,4 кВ, РУ- 0,4 кВ, фидер №7, автомат ВА51	ТТИ-А Кл.т. 0,5 600/5 Зав. № E27156 Зав. № E27147 Зав. № E27148	-	СЭТ-4ТМ.02.2 Кл.т. 0,5S/0,5 Зав. № 07030026		Ак- тивная Реак- тивная	± 1,0 ± 1,9	± 3,1 ± 4,4	

Примечания:

- 1 Характеристики погрешности ИК даны для измерений электроэнергии и средней мощности (30 минут).
- 2 В качестве характеристик относительной погрешности указаны границы интервала, соответствующие вероятности 0,95.
 - 3 Метрологические характеристики нормированы с учетом ПО.
 - 4 Нормальные условия эксплуатации:
- параметры сети: напряжение (0,99 1,01) Uн; ток (1,0 1,2) Ін; $\cos \phi = 0$,9инд.; частота (50 \pm 0,15) Γ ц;
 - температура окружающей среды: (23±2) °C.

- 5 Рабочие условия эксплуатации:
- для ТТ и ТН:
- параметры сети: диапазон первичного напряжения (0,9-1,1)U $_{1}$; диапазон силы первичного тока (0,05-1,2)І $_{1}$; коэффициент мощности соѕ $_{2}$ (sin $_{3}$) (0,5-1,0) (0,5-0,87); частота $(50\pm0,2)$ Γ $_{1}$;
 - температура окружающего воздуха от минус 45 °C до плюс 40 °C;
 - относительная влажность воздуха не более 98 % при плюс 25 °C;
 - атмосферное давление от 84.0 до 106.7 кПа.

Для счетчиков электрической энергии:

- параметры сети: диапазон вторичного напряжения (0.9-1.1) U $_1$; диапазон силы вторичного тока (0.01-1.2) І $_1$; диапазон коэффициента мощности $\cos\phi(\sin\phi)$ 0.5 -1.0 (0.5 -0.87); частота (50 ± 0.2) Γ_{11} ;
 - магнитная индукция внешнего происхождения не более 0,5 мТл;
- температура окружающего воздуха для счётчиков от минус 40 °C до плюс 55 °C:
 - относительная влажность воздуха не более 90 % при плюс 30 °C;
 - атмосферное давление от 70,0 до 106,7 кПа.

Для аппаратуры передачи и обработки данных:

- параметры питающей сети: напряжение (220 ± 10) В; частота (50 ± 1) Гц;
- температура окружающего воздуха от плюс 10 °C до плюс 30 °C;
- относительная влажность воздуха не более 95 % при плюс 25 °C;
- атмосферное давление от 70,0 до 106,7 кПа.
- 6 Погрешность в рабочих условиях указана для тока 5% Іном $\cos \varphi = 0.8$ инд и температуры окружающего воздуха в месте расположения счетчиков электроэнергии от плюс 13 °C до плюс 33 °C.
- 7 Допускается замена измерительных трансформаторов и счетчиков на аналогичные утвержденных типов с метрологическими характеристиками не хуже, чем у перечисленных в Таблице 2. Допускается замена УССВ на однотипное утвержденного типа. Замена оформляется актом в установленном на ООО «Волгодонский комбинат древесных плит» порядке. Акт хранится совместно с настоящим описанием типа АИИС КУЭ как его неотъемлемая часть.
- 8 Все измерительные компоненты системы утверждены и внесены в Государственный реестр средств измерений.

Параметры надежности применяемых в АИИС КУЭ измерительных компонентов:

- счётчик СЭТ-4ТМ.02 среднее время наработки на отказ не менее $T=90\ 000\ \text{ч}$, среднее время восстановления работоспособности $t = 2\ \text{ч}$;
- устройство синхронизации системного времени УССВ среднее время наработки на отказ не менее T = 35 000 ч, среднее время восстановления работоспособности tв = 2 часа;
- сервер среднее время наработки на отказ не менее $T=75\,859\,$ ч, среднее время восстановления работоспособности $t = 2\,$ часа.

Надежность системных решений:

- защита от кратковременных сбоев питания сервера с помощью источника бесперебойного питания;
- резервирование каналов связи: информация о результатах измерений может передаваться в организации-участники оптового рынка электроэнергии с помощью электронной почты и сотовой связи.

В журналах событий фиксируются факты:

- журнал счётчика:
 - параметрирования;

- пропадания напряжения;
- коррекции времени в счетчике.
- журнал сервера:
 - параметрирования;
 - пропадания напряжения;
 - коррекции времени в счетчике и сервере;
 - пропадание и восстановление связи со счетчиком.

Защищённость применяемых компонентов:

- механическая защита от несанкционированного доступа и пломбирование:
 - счетчика электрической энергии;
 - промежуточных клеммников вторичных цепей напряжения;
 - испытательной коробки;
 - сервера.
- защита на программном уровне информации при хранении, передаче, параметрировании:
 - счетчика электрической энергии;
 - сервера.

Возможность коррекции времени в:

- счетчиках электрической энергии (функция автоматизирована);
- ИВК (функция автоматизирована).

Возможность сбора информации:

- о состоянии средств измерений;
- о результатах измерений (функция автоматизирована).

Цикличность:

- измерений 30 мин (функция автоматизирована);
- сбора 30 мин (функция автоматизирована).

Глубина хранения информации:

- счетчик электрической энергии тридцатиминутный профиль нагрузки в двух направлениях не менее 35 суток; при отключении питания не менее 10 лет;
- сервер хранение результатов измерений, состояний средств измерений не менее 3,5 лет (функция автоматизирована).

Знак утверждения типа

Знак утверждения типа наносится на титульные листы эксплуатационной документации на систему автоматизированную информационно-измерительную коммерческого учёта электроэнергии (АИИС КУЭ) ООО «Волгодонский комбинат древесных плит» типографским способом.

Комплектность средства измерений

Комплектность АИИС КУЭ определяется проектной документацией на систему. В комплект поставки входит техническая документация на систему и на комплектующие средства измерений.

Комплектность АИИС КУЭ представлена в таблице 3.

Таблица 3 — Комплектность АИИС КУЭ

Наименование компонента	Тип компонента	№ Госреестра	Количество
1	2	3	4
Трансформаторы тока	ТФЗМ-110Б	24811-03	6
Трансформаторы тока	ТОЛ-10	38395-08	2
Трансформаторы тока	T-0,66	36382-07	3

Продолжение таблицы 3

1	2	3	4
Трансформаторы тока измерительные	ТТИ-А	28139-04	3
Трансформаторы напряжения	НКФ-110-57	14205-05	6
Трансформаторы напряжения	НТМИ-10-66	831-69	1
Счётчики активной и реактивной энергии			
переменного тока статические	СЭТ-4ТМ.02	20175-01	5
многофункциональные			
Сервер с программным обеспечением	«АльфаЦЕНТР»		1
Автоматизированное рабочее место			1
Методика поверки	_		1
Формуляр	_	_	1
Руководство по эксплуатации		_	1

Поверка

осуществляется по документу МП 58052-14 «Система автоматизированная информационноизмерительная коммерческого учета электроэнергии (АИИС КУЭ) ООО «Волгодонский комбинат древесных плит». Методика поверки», утвержденному ФГУП «ВНИИМС» в июле 2014 г.

Перечень основных средств поверки:

- трансформаторов тока в соответствии с ГОСТ 8.217-2003 «ГСИ. Трансформаторы тока. Методика поверки»;
- трансформаторов напряжения в соответствии с ГОСТ 8.216-2011 «ГСИ. Трансформаторы напряжения. Методика поверки»;
- по МИ 3195-2009. «ГСИ. Мощность нагрузки трансформаторов напряжения без отключения цепей. Методика выполнения измерений»;
- по МИ 3196-2009. «ГСИ. Вторичная нагрузка трансформаторов тока без отключения цепей. Методика выполнения измерений»;
- счетчиков электрической энергии СЭТ-4ТМ.02 в соответствии с документом «Счётчики активной и реактивной электрической энергии переменного тока, статические, многофункциональные СЭТ-4ТМ.02. Руководство по эксплуатации. ИЛГШ.411152.087РЭ1», раздел «Методика поверки», согласованным с ГЦИ СИ Нижегородского ЦСМ в 2001 г.;
- радиочасы МИР РЧ-01, принимающие сигналы спутниковой навигационной системы Global Positioning System (GPS), номер в Государственном реестре средств измерений № 27008-04;
- переносной компьютер с ПО и оптический преобразователь для работы с счетчиками системы и с ПО для работы с радиочасами МИР РЧ-01;
- термогигрометр CENTER (мод.314): диапазон измерений температуры от -20 до + 60 °C, дискретность 0,1 °C; диапазон измерений относительной влажности от 10 до 100%, дискретность 0,1%.

Сведения о методиках (методах) измерений

Метод измерений изложен в документе «Методика измерений электрической энергии с использованием АИИС КУЭ ООО «Волгодонский комбинат древесных плит»», аттестованной ООО «Техносоюз», аттестат об аккредитации № 01.00220-2013 от 05.07.2013 г.

Нормативные и технические документы, устанавливающие требования к системе автоматизированной информационно-измерительной коммерческого учета электроэнергии (АИИС КУЭ) ООО «Волгодонский комбинат древесных плит»

ГОСТ 22261-94 Средства измерений электрических и магнитных величин. Общие технические условия.

ГОСТ 34.601-90 Информационная технология. Комплекс стандартов на автоматизированные системы. Автоматизированные системы. Стадии создания.

ГОСТ Р 8.596-2002 ГСИ. Метрологическое обеспечение измерительных систем. Основные положения.

Рекомендации по областям применения в сфере государственного регулирования обеспечения единства измерений

- при осуществлении торговли и товарообменных операций.

Изготовитель

Общество с ограниченной ответственностью «Техносоюз»

(ООО «Техносоюз»)

Юридический адрес: 105122, г. Москва, Щелковское шоссе, д. 9

Тел.: (495) 640-96-09

Заявитель

Общество с ограниченной ответственностью «Энергостандарт»

(ООО «Энергостандарт»)

Юридический адрес: 123056, г. Москва, ул. Большая Грузинская, д. 42

Испытательный центр

Федеральное государственное унитарное предприятие «Всероссийский научноисследовательский институт метрологической службы» (ФГУП «ВНИИМС»)

Адрес: 119361, г. Москва, ул. Озерная, д.46

Тел./факс: (495)437-55-77 / 437-56-66 E-mail: office@vniims.ru, www.vniims.ru

Аттестат аккредитации ФГУП «ВНИИМС» по проведению испытаний средств измерений в

целях утверждения типа № 30004-13 от 26.07.2013 г.

Заместитель Руководителя Федерального агентства по техническому

регулированию и метрологии

Ф.В. Булыгин

М.п. «___»____2014 г.