ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Газоанализаторы MGA 12

Назначение средства измерений

Газоанализаторы MGA 12 (далее — газоанализаторы) предназначены для непрерывного автоматического измерения объемной доли загрязняющих веществ — оксида углерода (CO), оксида азота (NO), диоксида серы (SO₂), метана (CH₄), а также диоксида углерода (CO₂) и кислорода (O₂) в предварительно подготовленных отходящих и технологических газах промышленных предприятий.

Описание средства измерений

Принцип действия газоанализатора основан на следующих методах:

- 1) для определения всех компонентов (кроме O_2): ИК спектроскопия,
- 2) для определения О₂: электрохимический или парамагнитный.

Газоанализатор имеет следующие выходные сигналы:

- показания, выводимые на дисплей;
- аналоговые выходы по току (4-20) мА;
- дискретные выходы (состояние, предельные значения, клапаны);

Конструктивно газоанализатор выполнен в одном корпусе, в котором расположены кювета, излучающий и приемный блоки, блок питания и блок обработки сигналов и который можно установить в 19-дюймовую стойку.

На задней панели анализатора MGA 12 расположены разъемы для подключения питания и сигнальных кабелей, а также соединения для входа и выхода газа.

Анализируемая газовая проба предварительно проходит через пробоотборный зонд с фильтром, охладитель измеряемого газа (с конденсатным насосом), аналитический фильтр для очистки от пыли и поступает на вход газоанализатора.

Канал показаний паров воды является индикаторным.

Внешний вид газоанализатора приведен на рис. 1.

Рис.1. Внешний вид газоанализатора MGA 12

Программное обеспечение

Газоанализатор MGA 12 имеет встроенное программное обеспечение (ПО), которое осуществляет следующие функции:

- расчет массовой концентрации и объемной доли определяемого компонента,
- отображение результатов измерений на ЖКИ дисплее прибора,
- передачу результатов измерений по интерфейсу связи с ПК.
- контроль целостности программных кодов ПО, настроечных и калибровочных констант;
 - контроль общих неисправностей (связь, конфигурация).

Уровень защиты встроенного и автономного ПО от преднамеренных или непреднамеренных изменений соответствует уровню «С» по МИ 3286-2010.

Влияние встроенного ПО учтено при нормировании метрологических характеристик. Идентификационные данные программного обеспечения приведены в таблице 1. Таблица 1.

Идентификационное наименование	Номер версии (идентификационный	Цифровой идентификатор программного обеспече-	Алгоритм вычисления цифрового
программного обеспечения	номер) программного обеспечения*	ния (контрольная сумма исполняемого кода)	идентификатора программного обеспечения
EN_ MGA 12.S19	1.47	55692678e77d422884f0b4b1 dd248e8	MD5

^{*}Номер версии (идентификационный номер) программного обеспечения должен быть не ниже указанного в таблице.

Метрологические и технические характеристики

1 Диапазоны измерений и пределы допускаемой основной погрешности газоанализатора приведены в таблице 2.

Таблица 2.

Определяемый	Диапазон показаний	Диапазон измерений*		Пределы допускаемой		
компонент	массовой концентрации			основной погрешности		
	(объемной доли), мг/ 3					
		массовой	объемной	приведен-	относитель-	
		концентрации	доли, %	ной, ү, %	ной, δ, %	
		$M\Gamma/M^3$				
1	2	3	4	5	6	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0 150	0 - 30	-	± 10	-	
	0 – 130	Св. 30 – 150	-	-	± 10	
	0 1000	0 - 100	-	± 5	-	
	-	-	± 5			
(CO)	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	-	± 4	-		
	0 – 3000	Св. 300 – 3000	-	-	тогрешности относительной, δ, % 6 - ± 10 -	
$0-250$ $0-25$ $ C_{\rm B}. 25-250$ $ 0-100$ $ C_{\rm B}. 100-1000$ $ 0-300$ $0-300$	0 250	0 - 25	-	± 10	-	
	-	± 10				
	0 – 1000	0 - 100	-	± 8	-	
		Св. 100 – 1000	-	-	± 8	
	0 – 3000	0 – 300	-	± 8	-	
		Св. 300 – 3000	-	-	± 8	

Продолжение таблицы 2.

1	2	3	4	5	6
Диоксид се-	0. 200	0 - 40	-	± 10	-
	0 - 200	Св. 40 – 200	-	-	± 10
	0 – 1000	0 - 100	-	± 8	-
ры (SO ₂)		Св. 100 – 1000	1	-	± 8
(532)	0 – 3000	0 –300	-	± 8	-
	0 – 3000	Св. 300 – 3000	-	-	± 8
Диоксид углерода	(0 – 20) % об.	-	0 - 5	± 4	-
углерода (CO ₂)		-	Св. 5 – 20	-	± 4
Метан (СН ₄)	0 – 250	0 – 25	-	± 8	-
		Св. 25 – 250	-	-	± 8
	0 – 500	0 – 50	-	± 8	-
		Св. 50 – 500	-	-	± 8
	0 – 3000	0 –300	-	± 6	-
		Св. 300 – 3000	-	-	± 6
Кислород (O ₂)	(0-5) % (об.)	-	0-5	± 4	-
	0 – 25 % (об.)	-	0-5	± 4	-
		-	Св. 5 – 25	-	± 4

Примечание:

1) * –диапазон измерений и измеряемые компоненты определяются при заказе с учетом максимального числа измерительных каналов, равного 5.

При заказе диапазона измерений с верхним значением, отличным от приведенных в таблице, выбирают диапазон измерений, включающий это верхнее значение.

2) Пересчет значений объемной доли X в млн⁻¹ (ppm) в массовую концентрацию C, мг/м³, проводят по формуле:

 $C = X M/V_m$

где М – молярная масса компонента, г/моль,

 $V_{\rm m}$ — молярный объем газа-разбавителя — азота или воздуха, равный 22,4, при условиях (0 °C и 101,3 кПа в соответствии с РД 52.04.186-89), дм 3 /моль.

- 2 Диапазон номинальной цены единицы наименьшего разряда индикатора составляет:
- от 0,01 до 1 (для массовой концентрации в мг/м³);
- от 0,01 до 1 (для объемной доли в млн⁻¹);
- от 0,001 до 0,01 (для объемной доли в %).
- 3 Предел допускаемой вариации показаний, в долях от пределов допускаемой основной погрешности: 0,5.
- 4 Предел допускаемого изменения выходного сигнала за 24 ч непрерывной работы, в долях от пределов допускаемой основной погрешности: 0,5.
- 5 Пределы допускаемой дополнительной погрешности от изменения температуры окружающей среды в пределах рабочих условий эксплуатации на каждые $10~^{\circ}$ C от нормальных условий, в долях от пределов допускаемой основной погрешности: $\pm 0,5$.

- 6 Суммарная дополнительная погрешность от влияния содержания неизмеряемых компонентов в анализируемой газовой смеси, в долях от пределов допускаемой основной погрешности, не более: 0,5.
 - 7 Время прогрева, мин, не более:

60

8 Время установления показаний $T_{0,9}$, с, не более:

180

9 Габаритные размеры, масса и потребляемая электрическая мощность приведены в таблице 3.

Таблица 3.

Габаритные размеры, мм, не более	Масса, кг, не более	Потребляемая мощность, В·А, не более
Длина 483		
Ширина 354	5	40
Высота 133		

- 10 Напряжение питания от сети переменного тока частотой (50±1) Гц: (230±23) В.
- 11 Средняя наработка на отказ (при доверительной вероятности Р=0,95): 24000 часов.
- 12 Полный средний срок службы: 10 лет.
- 13 Условия эксплуатации:
- диапазон температуры окружающей среды:

от 5 °C до 40 °C;

- диапазон относительной влажности (без конденсации влаги):

до 90 %;

- диапазон атмосферного давления:

от 84 до 106,7 кПа.

- 14 Параметры анализируемого газа на входе газоанализатора:
- диапазон температур от 0 °C до 35 °C;
- содержание определяемых компонентов: не более верхнего значения диапазона измерений.

Примечание: Перекрестная чувствительность компенсирована введением поправок.

Знак утверждения типа

Знак утверждения типа наносится на переднюю панель газоанализатора и на титульный лист Руководства по эксплуатации.

Комплектность средства измерений

В комплект поставки входит:

1 Газоанализатор MGA 12

1 компл.

2 Руководство по эксплуатации (с дополнением)

1 экз.

3 Методика поверки МП 242- 1746-2014

1 экз.

Поверка

осуществляется по документу МП 242-1746-2014 «Газоанализаторы MGA 12. Методика поверки», утвержденному ГЦИ СИ ФГУП «ВНИИМ им. Д.И. Менделеева» 12 мая 2014 г.

Основные средства поверки:

- стандартные образцы состава газовые смеси в баллонах под давлением по ТУ 6-16-2956-92;
- поверочный нулевой газ (ПНГ) воздух в баллонах под давлением по ТУ6-21-5-82 или азот газообразный в баллонах под давлением по ГОСТ 9293-74.

Сведения о методиках (методах) измерений

методика измерений приведена в документе «Газоанализаторы MGA 12. Руководство по эксплуатации».

Нормативные и технические документы, устанавливающие требования к газоанализаторам MGA 12

- 1 ГОСТ 13320-81 «Газоанализаторы промышленные автоматические. Общие технические условия».
- 2 ГОСТ Р 50759-95 «Анализаторы газов для контроля промышленных и транспортных выбросов. Общие технические условия».
- 3 ГОСТ 8.578-2008 «ГСИ. Государственная поверочная схема для средств измерений содержания компонентов в газовых средах».
- 4 Техническая документация фирмы изготовителя.

Рекомендации по областям применения в сфере государственного регулирования обеспечения единства измерений

осуществление деятельности в области охраны окружающей среды

Изготовитель

Фирма «Dr. Fodisch Umweltmesstechnik AG», Германия

Aдрес: Zwenkauer Strasse 159, D-04420 Markranstadt – Germany.

Заявитель

ООО «Евротехлаб»

Адрес: 195279, г. Санкт-Петербург, Ириновский пр. 17, литер В, пом. 3-Н,

тел/факс: 8-(812)-380-91-99.

Испытательный центр

ГЦИ СИ ФГУП «ВНИИМ им. Д.И. Менделеева»,

Адрес: 190005, Санкт-Петербург, Московский пр., д. 19, тел. (812) 251-76-01,

факс: (812) 713-01-14, электронная почта: <u>info@vniim.ru</u>.

Аттестат аккредитации ГЦИ СИ ФГУП «ВНИИМ им. Д.И. Менделеева» по проведению испытаний средств измерений в целях утверждения типа № 30001-10 от 20.12.2010 г.

Заместитель Руководителя Федерального агентства по техническому регулированию и метрологии

Ф.В. Булыгин

M	.П.	<u> </u>	»		<u> 2</u> 01	4	Γ.
---	-----	----------	---	--	--------------	---	----