ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Системы газоаналитические Gasmet CEMS II модификаций Gasmet CEMS II-1 - Gasmet CEMS II-5

Назначение средства измерений

Системы газоаналитические Gasmet CEMS II (далее – системы) предназначены для непрерывного автоматического измерения массовой концентрации загрязняющих веществ: оксида углерода (CO), оксида азота (NO), диоксида азота (NO₂), закиси азота (N₂O), аммиака (NH₃), диоксида серы (SO₂), хлористого водорода (HCl), фтористого водорода (HF), формальдегида (CH₂O), метана (CH₄), этана (C₂H₆), пропана (C₃H₈), гексана (C₆H₁₄), этилена (C₂H₄), суммы углеводородов, а также взвешенных частиц (пыли), объемной доли паров воды (H₂O), диоксида углерода (CO₂), кислорода (O₂) и параметров газового потока (температуры, давления и скорости) в отходящих и технологических газах промышленных предприятий.

Описание средства измерений

Принцип действия системы основан на следующих методах: для определения всех компонентов (кроме кислорода) – ИК-Фурье спектроскопия; для определения кислорода — электрохимический (циркониевый датчик); для определения пыли — оптический или трибоэлектрический; для определения расхода — ультразвуковой или метод дифференциального давления (перепада давления).

Система газоаналитическая Gasmet CEMS II имеет 5 различных модификаций, которые отличаются комплектацией:

1) Модификация Gasmet CEMS II-1 имеет переносное исполнение (транспортируемое) и включает в себя:

Портативный зонд отбора проб газов,

Обогреваемую линию подачи пробы,

Портативный блок подачи пробы Gasmet,

Газоанализатор Gasmet DX-4000,

Портативный ПК с установленным ПО Calcmet.

2) Модификация Gasmet CEMS II-2 является стационарной базовой и имеет в составе следующие приборы:

Газоанализатор Gasmet CX-4000;

Газоанализатор кислорода OXITEC 500 E фирмы ENOTEC GmbH (опционально);

Промышленный компьютер с программным обеспечением (ПО) Gasmet (Calcmet STD для Windows) с устройствами ввода-вывода данных;

Блок подачи пробы Gasmet, включающий обогреваемые фильтр и насос подачи пробы, а также систему клапанов для переключения между газовыми потоками.

Стойка с приборами располагается в шкафу, на котором сверху или сбоку находится кондиционер для контроля микроклимата внутри шкафа.

Система пробоотбора, включающая зонд для отбора проб газов и обогреваемую линию подачи пробы длиной не более 150 м, по заказу может быть укомплектована системой обратной продувки, клапаном для подачи калибровочных газов, предварительным фильтром, блоком разбавления, охлаждения пробы, пробоотборной трубкой повышенной термостойкости.

В качестве измерительных преобразователей абсолютной температуры и абсолютного давления измеряемого газового потока, допускается использование внесенных в Госреестр СИ датчиков, имеющих токовый выход 4-20 мА и метрологические характеристики в соответствии с настоящим описанием типа (таблица 6).

- 3) Модификация Gasmet CEMS II-3 представляет собой систему Gasmet CEMS II-2, оснащенную одним из следующих приборов:
- анализаторов пыли D-R моделей D-R 220, D-R 290, D-R 300-40, D-R 800, D-R 820F (№ 56348-14 в Госреестре СИ),
 - анализаторов пыли D-RX-250 (№ 56347-14 в Госреестре СИ),
 - анализаторов пыли PFM 92 C (№ 46537-11 в Госреестре СИ),
- анализаторов пыли DUSTHUNTER моделей T50, T100, T200, SF100, SP100, SB50, SB100 (№ 45955-10 в Госреестре СИ).
- 4) Модификация Gasmet CEMS II-4 представляет собой исполнение Gasmet CEMS II-2, в состав которой добавлен один из следующих приборов:
 - измерители скорости потока D-FL 100 (№ 18069-12 в Госреестре СИ),
 - измерители скорости потока D-FL 200, D-FL 220 (№ 53691-13 в Госреестре СИ).
- 5) Модификация Gasmet CEMS II-5 представляет собой исполнение Gasmet CEMS II-2, в состав которой включены анализатор пыли и измерители скорости потока, приведенные в п.4.

Внешний вид системы модификации Gasmet CEMS II-1 и шкафа с приборной стойкой и приборами системы Gasmet CEMS II остальных модификаций приведены на рисунках 1 и 2, соответственно.

Зонд отбора пробы газа монтируется в точке для отбора проб источника выбросов. Анализируемый газ через обогреваемый зонд отбора проб газов подается по обогреваемой газовой лини на вход блока подачи пробы. Анализируемый газ проходит две стадии горячей фильтрации: в зонде и внутри блока подачи пробы Gasmet. Побудителем расхода системы является встроенный в блок подачи пробы Gasmet насос, подающий горячую пробу в газоанализатор Gasmet и ОХІТЕС 500 Е.

Температура анализируемого газа от места отбора пробы до анализаторов поддерживается на уровне 180 °C. На вход блока подачи пробы Gasmet подаются нулевой газ (азот) и газ для продувки (воздух) (не используется в модификации Gasmet CEMS II-1). ПГС определяемых компонентов в азоте для корректировки нулевых показаний и чувствительности газоанализаторов также могут подключаться к блоку подачи пробы Gasmet. Блок подачи пробы Gasmet контролирует температуру зонда, всех газовых линий системы, давление нулевого газа, и газа продувки. При отклонении контролируемых параметров от разрешенных, блок подачи пробы Gasmet отправляет в ПО Calcmet сигнал о наличии ошибки, и, по сигналу ПО, в зависимости от настроек, отключает насос и запускает режим аварийной продувки системы воздухом или выводит аварийные и/или предупредительные сигналы (не используется в модификации Gasmet CEMS II-1).

Любая модификация системы Gasmet CEMS II может быть оснащена системой разбавления пробы воздухом для приведения значений концентраций компонентов в анализируемом газе в диапазоны, указанные в Таблице 1. Максимальный коэффициент разбавления: 100.

Анализаторы пыли и расхода, а также преобразователи абсолютной температуры и абсолютного давления, монтируются на источнике выбросов. При помощи стандартных интерфейсов передачи данных информация о величинах измеряемых параметров по сигнальным кабелям поступает на соответствующие входы промышленного компьютера системы Gasmet CEMS II. ПО Calcmet записывает полученные данные и отображает их на экране монитора промышленного ПК.

Система Gasmet CEMS II имеет следующие выходные сигналы:

- показания, выводимые на монитор ПК системы;
- аналоговые выходы по току (4-20) мА, (0-20) мА, (2-20) мА или по напряжению (0-0,1) В, (0-1) В, (0-5) В, (0-10) В по каждому измеряемому параметру (по запросу);
 - цифровые выходы RS-232 и/или RS-422/485, по запросу Ethernet, ModBus;
 - релейные выходы аварийных сигналов (по запросу);

Значения концентраций измеряемых компонентов может выводиться в следующих единицах измерения: объемные доли в млрд⁻¹ (ppb), млн⁻¹ (ppm), %; массовой концентрации в

 $MK\Gamma/M^3$, $M\Gamma/M^3$, Γ/M^3 , $K\Gamma/M^3$.

Промышленный компьютер в Gasmet CEMS II модификациях 2-5 оснащен дополнительным жестким диском резервного копирования, который дублирует основной жесткий диск.

Система Gasmet CEMS II при помощи различных интерфейсов передачи данных может быть подключена к внешнему программно-аппаратному комплексу для формирования экологической отчетности.

Рис.1. Внешний вид системы модификации Gasmet CEMS II-1 (транпортируемая).

Рис.2. Внешний вид шкафа с приборной стойкой и приборами системы Gasmet CEMS II (стационарное исполнение)

Программное обеспечение

Системы имеют автономное программное обеспечение ПО Calcmet, разработанное фирмой-изготовителем. Программное обеспечение осуществляет функции:

- расчет объемной и массовой концентраций определяемых компонентов;
- пересчет концентраций, выраженных в объемных долях в массовые концентрации (с использованием информации о температуре и давлении пробы в источнике выбросов);
- пересчет концентраций на сухой газ и/или на заданное значение концентрации кислорода;
- отображение результатов измерений на мониторе компьютера;
- передачу результатов измерений через токовые выходы 4-20 мА;
- передачу результатов измерений через интерфейс RS-232, RS-422, RS-485, Ethernet, ModBus;
- передачу аварийных и предупредительных сигналов при помощи релейных выходов;
- контроль целостности программных кодов ПО, настроечных и калибровочных констант;
- контроль общих неисправностей (связь, конфигурация);
- контроль архивации измерений;
- контроль внешней связи.

Уровень защиты программного обеспечения от непреднамеренных и преднамеренных изменений соответствует уровню «С» по МИ 3286-2010.

Влияние программного обеспечения системы учтено при нормировании метрологических характеристик.

Идентификационные данные программного обеспечения приведены в таблице 1.

Таблица 1

Идентификацион- ное наименование программного обеспечения	Номер версии (идентификаци- онный номер) программного обеспечения	Цифровой идентификатор программного обеспечения (контрольная сумма исполняемого кода)	Алгоритм вычисления цифрового идентификатора программного обеспечения
Calcmet Standart for Windows (Calcmet.exe)	12.11	32-битная версия ПО: d80e9ad0377dfa2396bb52c82984ec07 64-битная версия ПО: 6e1b4b8b2567108915437938df974960	MD5

Примечание – номер версии ПО должен быть не ниже указанного в таблице.

Метрологические и технические характеристики

1. Диапазоны измерений и пределы допускаемой основной погрешности системы приведены в таблице 2.

Таблица 2

Определяемый компонент	показаний массовой	Диапазоны измерений		Пределы допускаемой основной погрешности	
	концентрации (объемной доли), мг/м ³ (% об.)	массовой концентрации $M\Gamma/M^3$	объемной доли, %	приведен- ной, γ, %	относительной, δ , %
1	2	3	4	5	6
	0 – 75		ı	± 15	-
Оксид углерода	0 73	Св. 10 – 75	-	-	± 15
(CO)	0 – 200	0 - 20	_	± 10	_
	0 200	Св. 20 – 200	_	_	± 10

	Продолжение таблицы 2.						
1	2	3	4	5	6		
	0 – 500	0 - 50	-	± 8			
	0 300	Св. 50 – 500	-	_	± 8		
	0 – 1000	0 – 100	_	± 5	_		
	0 – 1000	Св. 100 – 1000	_	_	± 5		
Оксид	0 – 2000	0 – 200	_	± 5	_		
углерода (CO)	0 – 2000	Св. 200 – 2000	_	_	± 5		
	0 – 5000	0 – 500	_	± 4	_		
	0 – 3000	Св. 500 – 5000	_	_	± 4		
	0 – 11500	0 – 1000	_	± 3	_		
	0 – 11300	Св.1000-11500	_	_	± 3		
	0 – 50	0 – 10	_	± 15	_		
	0 – 30	Св. 10–50	_	_	± 15		
	0 – 100	0 – 10	_	± 10	_		
Оксид азота	0 – 100	Св. 10 – 100	_	_	± 10		
(NO), диоксид азота	0 – 200	0-20	_	± 10	_		
(NO ₂),		Св. 20 – 200	_	_	± 10		
сумма оксидов	0 – 500	0 – 50	_	± 10	_		
азота (NO _x) в пересчете на		Св. 50 – 500	_	_	± 10		
NO ₂	0 – 1000	0 – 100	_	± 8	_		
		Св. 100 – 1000	_	_	± 8		
	0 – 2000	0 – 200	_	± 8	_		
		Св. 200 – 2000	_	_	± 8		
	0 – 20	0-2	_	± 15	_		
		Св. 2 – 20	_	_	± 15		
	0 – 50	0-5	_	± 15	_		
	0 – 30	Св. 5 – 50	_	_	± 15		
Закись азота	0 – 100	0 – 10	_	± 15	_		
(N ₂ O)	0 – 100	Св. 10 – 100	_	_	± 15		
	0 – 200	0-20		± 15	_		
	0 – 200	Св. 20 – 200			± 15		
	0 – 500	0 – 50	_	± 15			
	<u> </u>	Св. 50 – 500		_	± 15		

		I		пределис	пис таолицы 2.
1	2	3	4	5	6
	0 – 1000	0 - 100		± 15	_
Закись азота	0 1000	Св. 100 – 1000		_	± 15
(N_2O)	0 - 2000	0 - 200	-	± 15	_
	0 – 2000	Св. 200 – 2000	_	_	± 15
	0 - 80	0 – 10	_	± 15	_
	0 – 80	Св. 10 – 80	_	_	± 15
	0 - 200	0 - 20	_	± 10	_
	0 – 200	Св. 20 – 200	_	_	± 10
	0 – 500	0-50	_	± 10	_
Диоксид серы	0 – 300	Св. 50 – 500	_	_	± 10
(SO_2)	0 – 1000	0 – 100	_	± 8	_
	0 – 1000	Св. 100 – 1000	-	_	± 8
	0 – 2000	0 – 200	-	± 8	_
	0 – 2000	Св. 200 – 2000	-	_	± 8
	0 – 5000	0 – 500	-	± 8	_
		Св. 500 – 5000	-	_	± 8
	0 – 15	0-5	_	± 20	_
		Св. 5 – 15	-	_	± 20
	0 – 50	0 – 15	-	± 15	_
		Св. 15 – 50	-	_	± 15
	0 – 100	0 – 15	_	± 15	_
Хлористый		Св. 15 – 100		_	± 15
водород (HCl)	0. 200	0 - 20	_	± 15	_
	0 - 200	Св. 20 – 200	-	_	± 15
	0 – 500	0 - 50	_	± 15	_
	0 – 300	Св. 50 – 500	-	_	± 15
	0 750	0 – 75	_	± 10	_
	0 - 750	Св. 75 – 750	_	_	± 10
	0 – 15	0-5		± 20	_
Фтористый	0 – 13	Св. 5 – 15	_	_	± 20
водород (HF)	0 200	0 – 20	_	± 20	_
	0 - 200	Св. 20 – 200		_	± 20
		1		ı	1

Продолжение таолицы 2.					
1	2	3	4	5	6
	0 – 15	0 – 5	_	± 15	_
	0 13	Св. 5 – 15	_	_	± 15
	0 – 50	0 – 10	_	± 15	_
	0 – 30	Св. 10 – 50	_	_	± 15
	0 – 100	0 – 15	_	± 10	_
Аммиак	0 100	Св. 15 – 100	_	_	± 10
(NH_3)	0 - 200	0 - 20	_	± 10	_
	0 – 200	Св. 20 – 200	_	_	± 10
	0 – 500	0 - 50	_	± 10	_
	0 – 300	Св. 50 – 500	_	_	± 10
	0 – 1000	0 – 100	_	± 10	_
	0 – 1000	Св. 100 – 1000		-	± 10
	0 – 10 % (об.)	_	0 – 1	± 2	_
	0 – 10 % (00.)	_	Св. 1 – 10	_	± 2
Диоксид	0 – 20 % (об.)	_	0-2	± 2	_
углерода (CO ₂)		_	Св. 2 – 20	_	± 2
	0 – 30 % (об.)	_	0 – 3	± 2	_
		_	Св. 3 – 30	_	± 2
	0 – 20	0 – 20	_	± 10	_
Метан	0 – 200	0 – 20	_	± 10	_
(CH ₄)		Св. 20 – 200	_	-	± 10
Сумма углево-	0 – 500	0 – 50	_	± 8	_
(в пересчете		Св. 50 – 500	_	-	± 8
на метан)	0 – 1000	0 – 100	_	± 8	_
	0 – 1000	Св. 100 – 1000	_	_	± 8
5	0 - 20	0 - 20	_	± 12	_
Этан (C ₂ H ₆)	0 – 200	0 - 20	_	± 12	_
(- 2 0)	0 – 200	Св. 20 – 200	_	-	± 12
П	0-20	0-20	_	± 10	
Пропан (C ₃ H ₈)	0 – 200	0 – 20		± 10	
(-3-0)	U – 2UU	Св. 20 – 200	_	-	± 10
2	0 – 20	0 – 20		± 10	
Этилен (C ₂ H ₄)	0 – 200	0 - 20	_	± 10	_
(-2 +/	0 – 200	Св. 20 – 200	_	_	± 10
	1				

1	2	3	4	5	6
Г	0 - 20	0 - 20	_	± 10	_
Гексан (С ₆ H ₁₄)	0 - 200	0 - 20	_	± 10	_
(-0 14)	0 – 200	Св. 20 – 200	_		± 10
Формальдегид (HCOH)	0 – 20	0-20	-	± 15	_
Кислород	0 – 25 % (об.)	_	0 - 2	± 5	_
(O_2)		_	Св. 2 – 25	ı	± 5
	0 – 25 % (об.)	_	0 - 2	± 5	_
Пары воды (H ₂ O)	0 23 70 (00.)	_	Св. 2 – 25	ı	± 5
		_	0 – 3	± 10	_
2 - /	0 – 40 % (об.)	_	Св. 3 – 24	_	± 10
		_	Св. 24 – 40	_	± 20

Примечание:

- 1. Пересчет объемной доли $(млн^{-1})$ в массовую концентрацию компонента $(мг/м^3)$ проводится с приведением к температуре 0 $^{\circ}$ С и давлению 760 мм рт. ст. в соответствии с требованиями РД 52.04.186–89.
- 2. Диапазон измерений и измеряемые компоненты определяются при заказе с учетом максимального числа измерительных каналов.
- 2. Предел допускаемой вариации показаний, в долях от пределов допускаемой основной погрешности: 0,3.
- 3. Предел допускаемого изменения выходного сигнала за 24 ч непрерывной работы, в долях от пределов допускаемой основной погрешности: 0,3.
- 4. Пределы допускаемой дополнительной погрешности от изменения температуры окружающей среды в пределах рабочих условий эксплуатации на каждые $10\,^{\circ}$ C от нормальных условий, в долях от пределов допускаемой основной погрешности: $\pm\,0,3$.
- 5. Суммарная дополнительная погрешность от влияния содержания неизмеряемых компонентов* в анализируемой газовой смеси, в долях от пределов допускаемой основной погрешности, не более: 0,3.

Примечание: * при условии внесения поправок на взаимное влияние определяемых компонентов при проведении градуировки на заводе изготовителе для конкретных измерительных каналов.

- 6. Основные метрологические характеристики анализаторов пыли.
- 6.1 Метрологические характеристики анализаторов пыли D-R приведены в таблице 3.

Таблица 3.

					таолица э.	
Vonoveronyvorvyvo	Модель					
Характеристика	D-R 220	D-R 290	D-R 300-40	D-R 800	D-R 820F	
Диапазон измерений массовой концентрации пыли, ${\rm M}\Gamma/{\rm M}^3$	50 - 2000*	20 – 2000*	* 0,5 – 200*		1 – 200*	
Пределы допускаемой относительной погрешности, %	±25	±25	±20	±20	±25	
* метрологические характеристики установлены для тестового аэрозоля						

6.2 Метрологические характеристики анализаторов пыли DUSTHUNTER приведены в таблице 4.

Таблица 4.

		Модель					
Характеристика	T50, T100, T200	SF100	SP100	SB50	SB100		
Диапазон измерений массовой концентрации пыли (минимальный/максимальный) мг/м ³	0 – 200 0 – 10000	0-5 $0-200$	0-5 $0-200$	0 – 20 0 – 200	0 - 10 $0 - 200$		
Пределы допускаемой основной приведенной погрешно-							
сти, %	±25	±25	±25	±25	±25		
в диапазоне, $M\Gamma/M^3$	0 - 200	0 - 5	0 - 5	0 - 20	0 - 10		
Пределы допускаемой основной относительной погрешной							
ности, %	±25	±25	±25	±25	±25		
в диапазоне, мг/м ³	св. 200 - 1000	св. 5 – 200	св. 5 – 200	св. 20 – 200	св. $10 - 200$		

6.3 Метрологические характеристики анализаторов пыли PFM 92 C.

Диапазон измерений массовой концентрации пыли, мг/м ³	0 - 1000;
Пределы допускаемой приведенной погрешности	
в диапазоне от 0 до 100 мг/м^3 , %	$\pm 20;$
Пределы допускаемой относительной погрешности	
в диапазоне свыше 100 до 1000 мг/м ³ , %	$\pm 20.$

Примечание. Анализаторы пыли PFM 92 C соответствуют ГОСТ Р ИСО 10155-2006 «Автоматический мониторинг массовой концентрации твердых частиц. Характеристики измерительных систем, методы испытаний и технические требования» только при условии градуировки приборов на объекте (для конкретных условий газохода), т.е. прямого соотнесения с референтным гравиметрическом ручным методом по ГОСТ Р ИСО 9096 либо по разработанной методике измерений.

6.4 Метрологические характеристики анализаторов пыли D-RX-250 приведены в таблице 5.

Таблица 5.

Каналы измерений	Диапазоны	Пределы допускаемой погрешности
	измерений	
Массовая концентрация пыли, мг/м ³	0 – 10	± 25 % (приведенная)
	0 - 500	± 20 % (приведенная)
Скорость газового потока, м/с	7 - 35	± (0,5 + 0,02V) м/с (абсолютная), где
		V- скорость, м/с
Температура, ⁰ С	0 - 350	± 2 ⁰ C (абсолютная)

7. Основные метрологические характеристики измерителей абсолютного давления и температуры потока приведены в таблице 6.

Таблица 6.

			Пределы	Пределы
Параметры	Единицы	Диапазон	допускаемой	допускаемой
Парамстры	измерений	измерений	абсолютной	приведенной
			погрешности, °С	погрешности, %
Абсолютное	кПа	90-130		± 0,25
давление	KIIa	70-130	_	± 0,23
Температура	°C	0-1200	± 0,5	
газового потока	C	0-1200	± 0,3	-

8. Основные метрологические характеристики измерителей скорости потока приведены в таблице 7.

Таблица 7.

			таолица 7.
Определяемый	Единицы	Диапазон	Пределы
параметр	измерений	измерений	допускаемой
			погрешности
Диапазон измерений скорости			
газового потока в рабочих усло-			
виях) //o		
D-FL 100	м/с	3 - 40	± 0,4 m/c
D-FL 200		0.1 - 40	+ 2 0/ (HPMP)
D-FL 220		0,1-40	±3 % (прив.)
Диапазон измерений объемного			
расхода (в зависимости от диа-			
метра условного прохода трубо-			
провода)	м ³ /ч		
D-FL 100		1400 - 4500000	-
D-FL 200		0 - 5000000	
D-FL 220		0 – 300000	_
Диапазон измерений температу-			
ры газового потока			
D-FL 100	°C	0 - 400	± 0,5 °C
D-FL 200		0 - 300	
D-FL 220		минус 20 – 300	-
Диапазон измерений абсолютно-			
го давления газового потока			
D-FL 100	кПа	90 – 130	± 0,25 % (прив.)
D-FL 200	KHA		
D-FL 220		-	-

^{9.} Время прогрева, мин, не более: 90.

^{10.} Время установления показаний $T_{0,9}$, с, не более (без учета транспортировки пробы): 120.

11. Габаритные размеры, масса, потребляемая электрическая мощность, объемный расход приведены в таблице 8.

Таблица 8.

Наименование		Габаритные размеры, ДхШхВ, мм, не более	Масса, кг, не более	Потребляемая мощность, ВА, не более		
Gasmet CEMS II (исп.1)	Газоанализатор Gasmet DX-4000	445x393x164	13,9	300		
	Блок подачи пробы Gasmet	400x300x200	12,3			
Система Gasmet CEMS II (модификации 2-5) с кондиционером, смонтированным сверху (модификации 2-5)		600x600x2115	500	800		
Система Gasmet CEMS II (модификации 2-5) с кондиционером, смонтированным боку (модификации 2-5)		600x800x2100	500	800		

- 12. Напряжение питания от сети переменного тока частотой (50 ± 1) Гц: (230 ± 23) В.
- 13. Средняя наработка на отказ (при доверительной вероятности Р=0,95): 24000 часов.
- 14. Полный средний срок службы: 10 лет.
- 15. Условия эксплуатации:
 - диапазон температуры окружающей среды:

Модификация Gasmet CEMS II-1

от минус 10 °C до 40 °C;

Остальные модификации

от 0 °C до 40 °C;

- диапазон относительной влажности (без конденсации влаги)

до 95 %;

- диапазон атмосферного давления

от 84 до 106,7 кПа.

- 16. Параметры анализируемого газа на входе пробоотборного устройства (зонда), не более:
 - температура до 600 $^{\rm o}{\rm C}$ (до 1200 $^{\rm o}{\rm C}$ в соответствующей модификации)
- содержание пыли до 2 г/м 3 (более 2 г/м 3 при использовании специальных модификаций зондов);
 - содержание влаги до 40 % (об.)
- 17. Параметры анализируемого газа на входе аналитического блока Gasmet CEMS II (или газоанализатора Gasmet в модификации Gasmet CEMS II-1):
 - температура 180 °С;
 - содержание неизмеряемых компонентов:
- содержание компонентов, указанных в Таблице 2 не более верхнего значения максимальных диапазонов измерений соответствующих компонентов.

Знак утверждения типа

Знак утверждения типа наносится на переднюю панель системы и на титульный лист Руководства по эксплуатации.

Комплектность средства измерений

В комплект поставки входит:

1 Система газоаналитическая Gasmet CEMS II

(комплектация приведена в Описании СИ)

1 шт.

2 Руководство по эксплуатации (с дополнением)

1 экз.

3 Методика поверки МП-242-1566-2014

1 экз.

Поверка

осуществляется по документу МП-242-1566-2014 «Системы газоаналитические Gasmet CEMS II модификаций Gasmet CEMS II-1 - Gasmet CEMS II-5. Методика поверки», утвержденному ГЦИ СИ ФГУП «ВНИИМ им. Д.И. Менделеева» 27 мая 2014 г.

Основные средства поверки:

- стандартные образцы состава - газовые смеси NO/N₂, NO₂/N₂, N₂O/N₂ NH₃/N₂, SO₂/N₂, O₂/N₂, HCl/N₂, HF/N₂, CO₂/ N₂ (воздух), CO/N₂ (воздух), CH₄/N₂ (воздух), C₂H₆/N₂, C₃H₈/N₂, C₂H₄/N₂, C₆H₁₄/N₂ по ТУ 6-16-2956-92;

Рабочий эталон 1-го разряда - генератор газовых смесей ГГС модификаций ГГС-Т или ГГС-К (термодиффузионный) по ШДЕК.418319.009 ТУ (№ 45189-10 в Госреестре СИ РФ) в комплекте с источниками микропотоков (ИМ) формальдегида по ИБЯЛ .418319.013 ТУ;

- поверочный нулевой газ (ПНГ) воздух в баллонах под давлением по ТУ6-21-5-82 или азот газообразный в баллонах под давлением по ГОСТ 9293-74;
- генератор влажного воздуха HygroGen, модификации HygroGen 2, номер Госреестра 32405-11, диапазон воспроизведения относительной влажности от 0 до 100 %, пределы допускаемой абсолютной погрешности по относительной влажности $\pm 0,5$ %, диапазон воспроизведения температуры от 0 до 60 °C, пределы допускаемой абсолютной погрешности по температуре $\pm 0,1$ °C;
- гигрометр Rotronic модификации HygroPalm, номер Госреестра 26379-10, диапазон измерений относительной влажности от 0 до 100 %, СКО случайной составляющей погрешности измерений относительной влажности не более 0,1 %.

Поверка преобразователей температуры и давления производится в соответствии с их методиками поверки.

Документы, в соответствии с которыми проводиться поверка средств измерений, входящих в состав Gasmet CEMS II и внесенные в Госреестр РФ, приведены в таблице 9.

Таблица 9.

Наименование	НД				
Анализаторы пыли					
D-R	по методике поверки МП 242-1568-2013				
D-RX 250	по методике поверки МП 242-1571-2013				
DUSTHUNTER	по документу «Инструкция. Анализаторы пыли DUSTHUNTER. Методика				
	поверки»				
PFM 92 C	по методике поверки МП 242-1041-2010				
Анализаторы скорости потока					
DF-L 100	по методике поверки МП 2550-0183-2011				
D-FL 200, D-FL 220	по методике поверки МП 2550-0210-2012				

Сведения о методиках (методах) измерений

методика измерений приведена в документе «Системы газоаналитические Gasmet CEMS II модификаций Gasmet CEMS II-1 - Gasmet CEMS II-5 . Руководство по эксплуатации».

Нормативные и технические документы, устанавливающие требования к системам газоаналитическим Gasmet CEMS II модификаций Gasmet CEMS II-1 - Gasmet CEMS II-5

- 1 ГОСТ Р 50759-95 «Анализаторы газов для контроля промышленных и транспортных выбросов. Общие технические условия».
- 2. ГОСТ 13320-81 «Газоанализаторы промышленные автоматические. Общие технические условия».
- 3 ГОСТ 8.578-2008 «ГСИ. Государственная поверочная схема для средств измерений содержания компонентов в газовых средах».
- 4 ГОСТ Р 8.606-2004 «ГСИ. Государственная поверочная схема для средств измерений дисперсных параметров аэрозолей, взвесей и порошкообразных материалов».
- 5 ГОСТ 8.558-93 «ГСИ. Государственная поверочная схема для средств измерений температуры».
- 6 ГОСТ 8.223-76 «ГСИ. Государственный специальный эталон и общесоюзная поверочная схема для средств измерений абсолютного давления в диапазоне $2,7\cdot10^2$ $4000\cdot10^2$ Па».
- 7 ГОСТ 8.542-86 «ГСИ. Государственный специальный эталон и государственная поверочная схема для средств измерений скорости воздушного потока».
- 8 Техническая документация фирмы изготовителя.

Рекомендации по областям применения в сфере государственного регулирования обеспечения единства измерений

осуществление деятельности в области охраны окружающей среды.

Изготовитель

Фирма Gasmet Technologies Oy, Финляндия

Адрес: Pulttitie 8 A, FI-00880, Helsinki, Finland.

Тел. +358 9 7590 0400, факс: +358 9 7590 0435, E-mail: contact@gasmet.fi.

Заявитель

Фирма Sintrol Oy, Финляндия.

Адрес: Ruosilantie 15, FI-00390, Helsinki, Finland.

Тел. +358 9 5617 360, факс: +358 9 5617 3680, E-mail: info@sintrol.com.

Испытательный центр

ГЦИ СИ ФГУП «ВНИИМ им. Д.И. Менделеева»,

Адрес: 190005, Санкт-Петербург, Московский пр., д. 19, тел. (812) 251-76-01,

факс: (812) 713-01-14, электронная почта: <u>info@vniim.ru</u>.

Аттестат аккредитации ГЦИ СИ ФГУП «ВНИИМ им. Д.И. Менделеева» по проведению испытаний средств измерений в целях утверждения типа № 30001-10 от 20.12.2010 г.

Заместитель Руководителя Федерального агентства по техническому регулированию и метрологии

Ф.В. Булыгин

М.п.	«	>>	2014 i