## ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

## Весы автомобильные ВАС

## Назначение средства измерений

Весы автомобильные ВАС (далее — весы) предназначены для статических измерений массы транспортных средств, а также различных грузов.

## Описание средства измерений

Весы имеют модульную конструкцию и состоят из:

- грузоприемного устройства (далее ГПУ), включающего в себя тензорезисторные весоизмерительные датчики (далее датчики, Т.2.2.1 ГОСТ OIML R-76–1);
  - весоизмерительного прибора (индикатор, Т.2.2.2 ГОСТ OIML R-76–1).

ГПУ представляет собой опирающуюся на датчики металлическую раму с настилом из листовой стали. ГПУ устанавливаются на единый железобетонный фундамент, на дорожные плиты или на асфальтируемую площадку, в зависимости от характеристик места установки весов. В весах используются датчики одного из следующих типов:

- датчики весоизмерительные тензорезисторные С, модификации С16A, изготавливаемые «Hottinger Baldwin Messtechnik GmbH», Германия и «Hottinger Baldwin Measurement (Suzhou) Co., Ltd.», Китай (Госреестр № 20784-09);
- датчики весоизмерительные тензорезисторные RTN, изготавливаемые «Hottinger Baldwin Messtechnik GmbH», Германия (Госреестр № 21175-13);
- датчики весоизмерительные тензорезисторные WBK, изготавливаемые «CAS Corporation Ltd», Корея (Госреестр № 56685-14);
- датчики весоизмерительные тензорезисторные М, изготавливаемые ЗАО
   "Весоизмерительная компания "Тензо-М", пос. Красково (Госреестр № 53673-13);
- датчики весоизмерительные тензорезисторные ZS, NHC, изготавливаемые «Keli Electric Manufacturing (Ningbo) Co., Ltd.», Китай;
- датчики весоизмерительные сжатия RC3, изготавливаемые «FLINTEC GmbH», Германия (Госреестр № 50843-12);
- датчики весоизмерительные тензорезисторные С11, изготавливаемые «Deasar Sensors Ou», "Эстония (Госреестр № 51168-12).

Общий вид ГПУ весов представлен на рисунке 1.



Рисунок 1 — Общий вид ГПУ весов

Принцип действия весов основан на преобразовании возникающей под действием силы тяжести взвешиваемого груза деформации упругих элементов датчиков в аналоговый электрический сигнал, пропорциональный массе. Далее этот сигнал преобразуется в

цифровой код и обрабатывается. Измеренное значение массы выводится на дисплей весоизмерительного прибора.

В качестве весоизмерительного прибора в весах используются преобразователи весоизмерительные вторичные Ньютон, изготавливаемые ООО «ВЕСКОМ», г Челябинск, ООО ТД «ВЕСКОМ», г Челябинск, ООО ИК «ВЕСКОМ», г Челябинск (Госреестр № 56674-14). Преобразователь может быть установлен отдельно или же размещен в блоке управления вместе с устройствами коммутации.

Общий вид весоизмерительных приборов представлен на рисунке 2.



Ньютон-11М, Ньютон-11С Ньютон-41, Ньютон-42



Ньютон-21 Ньютон-22



Ньютон-81

Рисунок 2 — Общий вид преобразователей весоизмерительных вторичных Ньютон

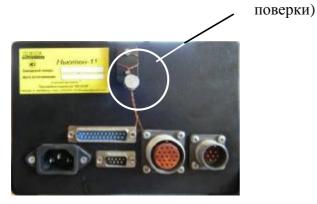
Весы снабжены следующими устройствами и функциями (в скобках указаны соответствующие пункты ГОСТ OIML R 76-1—2011):

- устройство первоначальной установки на нуль (Т.2.7.2.4);
- устройство слежения за нулем (Т.2.7.3);
- полуавтоматическое устройство установки на нуль (Т.2.7.2.2);
- устройство уравновешивания тары устройство выборки массы тары (Т.2.7.4.1);
- устройство выбора единиц измерений (2.1);
- процедура просмотра всех соответствующих символов индикации в активном и неактивном состояниях (5.3.1).
- формирование электрических цифровых сигналов управления исполнительными механизмами весоизмерительных систем.

Весы имеют интерфейсами для связи с периферийными устройствами или другими приборами, например, вторичным дисплеем, персональным компьютером, устройством долговременного хранения измерительной информации.

Модификации весов отличаются максимальной нагрузкой, исполнением ГПУ и имеют следующие обозначения:

Максимальная нагрузка, т:
20, 30, 50, 60, 80, 100, 150, 200, 250
Длина ГПУ, м:
от 6 до 27 с шагом 1 м
Ширина ГПУ, м:
от 3 до 6 с шагом 0,2 м
Точность (индекс может отсутствовать):


Т: увеличенное число поверочных интервалов (см. Таблицу 2) при отсутствии индекса число поверочных интервалов не более 3000.

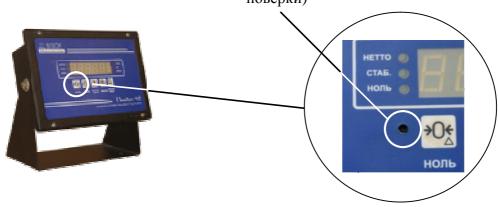
Пломбировке от несанкционированного доступа подвергается переключатель режимов работы/настройки. В модификациях Ньютон-11М, Ньютон-11С, Ньютон-21, Ньютон-81 он расположен на задней панели прибора. В модификациях Ньютон-

41, Ньютон-42 — на лицевой панели. В приборах Ньютон-11М, Ньютон-11С переключатель блокируется с помощью пластины и пломбируется свинцовой пломбой (знаком поверки в виде свинцовой пломбы). В модификациях Ньютон-21, Ньютон-22, Ньютон-41, Ньютон-42 Ньютон-81 переключатель утоплен в корпус, и блокируется с помощью разрушаемой наклейки (знаком поверки в виде наклейки).

Схема пломбировки приведена на рисунках 3 и 4.

Переключатель режимов работы/настройки и место пломбировки (размещения знака






Ньютон-11М, Ньютон-11С

Ньютон-21, Ньютон-22, Ньютон-81

Рисунок 3 — Схема пломбировки от несанкционированного доступа

Переключатель режимов работы/настройки и место пломбировки (размещения знака поверки)



Ньютон-41, Ньютон-42 Рисунок 4 — Схема пломбировки от несанкционированного доступа

#### Программное обеспечение

Программное обеспечение (далее —  $\Pi O$ ) весов является встроенным, используется в стационарной (закрепленной) аппаратной части с определенными программными средствами.

Защита от несанкционированного доступа к настройкам и данным измерений обеспечивается невозможностью изменения ПО без применения специализированного оборудования производителя.

Изменение ПО приборов через интерфейс пользователя невозможно.

Для защиты от несанкционированного доступа к параметрам юстировки и настройки используется пломбируемый переключатель.

Защита  $\Pi O$  от преднамеренных и непреднамеренных воздействий соответствует уровню «С» по МИ 3286-2010.

Идентификационные данные ПО отображаются при включении весов на дисплее преобразователя весоизмерительного вторичного и приведены в таблице 1.

Таблица 1 — Идентификационные данные ПО

| Преобразова-<br>тель<br>весоизмерите<br>льный<br>вторичный | Наименова-<br>ние<br>програм-<br>много<br>обеспечения | Идентифика-<br>ционное<br>наименование<br>программного<br>обеспечения | Номер версии (идентифика-<br>ционный номер) программного обеспечения | Цифровой идентификатор программного обеспечения (контрольная сумма исполняемого кода) | Алгоритм вычисления цифрового идентификатора программного обеспечения |
|------------------------------------------------------------|-------------------------------------------------------|-----------------------------------------------------------------------|----------------------------------------------------------------------|---------------------------------------------------------------------------------------|-----------------------------------------------------------------------|
| Ньютон-11М                                                 |                                                       |                                                                       | V - 03.03                                                            |                                                                                       |                                                                       |
| Ньютон-11С                                                 | _                                                     | _                                                                     | V - 03.01                                                            | _                                                                                     | _                                                                     |
| Ньютон-21                                                  |                                                       |                                                                       | V - 01.03                                                            | _                                                                                     | _                                                                     |
| Ньютон-22                                                  |                                                       | _                                                                     | V - 1.5                                                              |                                                                                       |                                                                       |
| Ньютон-41,<br>Ньютон-42                                    | _                                                     |                                                                       | V - 03.01                                                            | _                                                                                     | _                                                                     |
| Ньютон-42А                                                 | _                                                     |                                                                       | V - 02.02                                                            | _                                                                                     | _                                                                     |
| Ньютон-42В                                                 |                                                       |                                                                       | V - 02.03                                                            |                                                                                       |                                                                       |
| Ньютон-81                                                  | _                                                     | _                                                                     | V -02.01                                                             |                                                                                       | _                                                                     |

## Метрологические и технические характеристики

Таблица 2 — Метрологические характеристики

| Метрологическая | Максимальная    | Поверочный интервал $e$ ,     | Число поверочных   |
|-----------------|-----------------|-------------------------------|--------------------|
| характеристика  | нагрузка Мах, т | действительная цена деления   | интервалов весов п |
|                 |                 | (шкалы) $d$ ( $e$ = $d$ ), кг |                    |
| BAC-20          | 20              | 10                            | 2000               |
| BAC-20T         | 20              | 5                             | $4000^{1)}$        |
| BAC-30          | 30              | 20                            | 1500               |
| BAC-30T         | 30              | 10                            | 3000               |
| BAC-40          | 40              | 20                            | 2000               |
| BAC-40T         | 40              | 10                            | 4000               |
| BAC-50          | 50              | 20                            | 2500               |
| BAC-50T         | 50              | 10                            | 50001)             |
| BAC-60          | 60              | 20                            | 3000               |
| BAC-80          | 80              | 50                            | 1600               |
| BAC-80T         | 80              | 20                            | $4000^{1)}$        |
| BAC-100         | 100             | 50                            | 2000               |
| BAC-100T        | 100             | 20                            | 50001)             |
| BAC-150         | 150             | 50                            | 3000               |
| BAC-200         | 200             | 100                           | 2000               |
| BAC-250         | 250             | 100                           | 2500               |

## Примечание:

1) Только при использовании C16A, RTN с числом поверочных интервалов  $n_{max}$  не менее числа поверочных интервалов весов и оснащении места установки весов специальными средствами защиты от атмосферных воздействий и отсутствии вибрации.

## Знак утверждения типа

Знак утверждения типа наносится на маркировочные таблички, расположенные на корпусе ГПУ и/или электронного весоизмерительного устройства, а также на титульные листы эксплуатационной документации.

## Комплектность средства измерений

| Весы                                                           | 1 шт.  |
|----------------------------------------------------------------|--------|
| Паспорт весов                                                  | 1 экз. |
| Руководство по эксплуатации весов                              | 1 экз. |
| Паспорт преобразователя весоизмерительного                     | 1 экз. |
| Руководство по эксплуатации преобразователя весоизмерительного | 1 экз. |

## Поверка

осуществляется в соответствии с приложением ДА «Методика поверки весов» ГОСТ OIML R 76-1—2011, «Весы неавтоматического действия. Часть 1. Метрологические и технические требования. Испытания».

Идентификационные данные, а также процедура идентификации программного обеспечения приведены в разделе 8 «Свидетельство о приемке» паспорта преобразователя весоизмерительного.

Основные средства поверки: гири, соответствующие классу точности  $M_1$ ,  $M_{1-2}$  по ГОСТ OIML R 111-1–2009.

## Сведения о методиках (методах) измерений

Раздел 5 «Использование» документа «Весы автомобильные ВАС. Руководство по эксплуатации».

## Нормативные и технические документы, устанавливающие требования к весам автомобильным ВАС

1. ГОСТ OIML R 76-1–2011 «Весы неавтоматического действия. Часть 1. Метрологические и технические требования. Испытания».

- $2.\ \Gamma OCT\ 8.021$ - $2005\ « \Gamma CИ.\ \Gamma осударственная поверочная схема для средств измерений массы».$ 
  - 3. ТУ 4274-002-45627446-09 «Весы автомобильные ВАС. Технические условия»

# Рекомендации по областям применения в сфере государственного регулирования обеспечения единства измерений

Осуществление торговли и товарообменных операций.

#### Изготовитель

Общество с ограниченной ответственностью Торговый Дом «ВЕСКОМ» (ООО ТД «ВЕСКОМ»), г. Челябинск.

454074, Россия, г. Челябинск, ул. Механическая, д. 26.

Тел./факс: (351) 268-41-52. E-mail: mail@ves-com.com

## Заявитель

Общество с ограниченной ответственностью «ВЕСКОМ» (ООО «ВЕСКОМ»), г. Челябинск

454091, Россия, г. Челябинск, ул. Цвиллинга, д. 55А, офис 23.

Тел./факс: (351) 237-13-44, 268-41-52. E-mail: mail@ves-com.com

#### Испытательный центр

Федеральное государственное унитарное предприятие «Всероссийский научноисследовательский институт метрологической службы» (ФГУП «ВНИИМС»)

Адрес: 119361, г. Москва, ул. Озерная, 46 Тел./факс: (495) 437-55-77/ 437-56-66. e-mail: office@vniims.ru, www.vniims.ru.

Аттестат аккредитации  $\Phi$ ГУП «ВНИИМС» по проведению испытаний средств измерений в целях утверждения типа №30004-13 от 26.07.2013 г.

| Заместитель Руководителя                   |              |           |        |
|--------------------------------------------|--------------|-----------|--------|
| Федерального агентства                     |              |           |        |
| по техническому регулированию и метрологии | Ф.В. Булыгин |           |        |
|                                            |              |           |        |
| M.                                         | ı. «         | <u></u> » | 2014 г |