ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Сигнализаторы аварийные дозиметрические ДРГ-АТ2331

Назначение средства измерений

Сигнализаторы аварийные дозиметрические ДРГ-АТ2331 (далее – сигнализаторы) предназначены для измерений мощности поглощенной дозы (далее – мощности дозы) и поглощенной дозы (далее – дозы) рентгеновского и гамма-излучения, обнаружения возникновения самоподдерживающейся цепной ядерной реакции деления (СЦР) в составе систем аварийной сигнализации (САС) и выдачи аварийных сигналов о необходимости эвакуации персонала из ядерно опасной зоны.

Описание средства измерений

Принцип действия сигнализаторов основан на использовании интеллектуальных блоков детектирования рентгеновского и гамма-излучения (далее – блоки детектирования БДКГ-25). В детектирования БДКГ-25 качестве детектора в блоке используется пластмассовый сцинтилляционный детектор и фотоэлектронный умножитель. Импульсы, поступающие с фотоэлектронного умножителя, формируются, усиливаются электронной схемой преобразуются микропроцессором В дозиметрическую информацию. представляет собой монтируемую на объекте стационарную аппаратуру, содержащую блоки детектирования БДКГ-25, блок регистрации, устройства звуковой и световой сигнализации, соединенные между собой по интерфейсу связи типа RS485.

Сигнализатор обеспечивает возможность ввода порогового уровня по мощности дозы, расчет порога по дозе и хранение пороговых уровней при последующих включениях.

Сигнализатор реагирует на прямое гамма-излучение, испускаемое во время критической аварии при минимальной продолжительности СЦР 10^{-3} с, и отвечает установленному порогу обнаружения.

Алгоритм работы блоков детектирования БДКГ-25 обеспечивает непрерывность процесса измерения. Каждую миллисекунду новое измеренное значение дозы добавляется к дозе, накопленной за время 3,3 с, а первое значение дозы из указанного интервала накопления – вычитается. Полученное значение накопленной дозы сравнивается с рассчитанным пороговым уровнем по дозе. При превышении порога по накопленной дозе блок детектирования БДКГ-25 формирует потенциальный сигнал СЦР для блока регистрации. Блоком регистрации выдаются потенциальные сигналы для включения звуковой и световой сигнализации устройств сигнализации. Включается аварийная звуковая и световая сигнализации.

Параллельно проводится вычисление «скользящего» среднего значения мощности дозы и коэффициентов вариации, характеризующих достоверность результата измерения. Статистическая обработка результатов измерений и оценка статистических флуктуаций обеспечивают быструю адаптацию к изменениям уровня измеряемой величины и оперативное предоставление полученной информации для передачи по каналу связи.

Для повышения стабильности измерений в блоках детектирования БДКГ-25 применена система светодиодной стабилизации измерительного тракта, которая одновременно обеспечивает проверку работоспособности всего тракта в процессе работы.

Управление режимами работы, выполнение необходимых вычислений, хранение и индикация результатов измерений, сопряжение блоков детектирования БДКГ-25 с внешними устройствами и проведение самодиагностики осуществляются с помощью микропроцессорного устройства.

Передача управляющих команд от блока регистрации к блокам детектирования БДКГ-25 и получение блоком регистрации информации от блоков детектирования БДКГ-25 осуществляется по трем линиям передачи данных по интерфейсу связи RS485. Объединение сигнализатора аварийного дозиметрического ДРГ-АТ2331 и измерителя-сигнализатора СРК-АТ2327 в систему, сопряжение с ПЭВМ осуществляется с помощью четвертой линии передачи данных по интерфейсу связи RS485, составляя с ними САС.

Дозиметрическая информация, передаваемая блоком регистрации по интерфейсу связи RS485, используется для отображения в информационной системе CAC.

Сигнализатор обеспечивает автоматическую запись в память мощности дозы гаммаизлучения с периодом 10 мин и в моменты изменения мощности дозы гамма-излучения; дозы гамма-излучения за время превышения аварийного порогового уровня.

Сигнализатор при превышении верхнего предела диапазона измерений мощности дозы рентгеновского и гамма-излучения обеспечивает звуковую и световую сигнализацию о перегрузке с индикацией показаний не ниже верхнего предела диапазона измерений мощности дозы рентгеновского и гамма-излучения.

Общий вид сигнализатора аварийного дозиметрического ДРГ-АТ2331 представлен на рисунке 1.

Внешний вид блока детектирования гамма-излучения БДКГ-25 и схема с указанием места пломбирования показаны на рисунке 2.

Рисунок 1 – Общий вид сигнализатора аварийного дозиметрического ДРГ-АТ2331

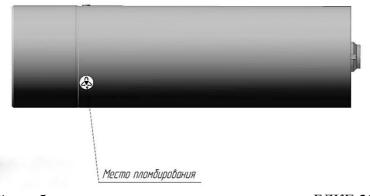


Рисунок 2 – Внешний вид блока детектирования гамма-излучения БДКГ-25 с указанием места пломбирования

Программное обеспечение

Программное обеспечение (ΠO) сигнализатора состоит из встроенного и внешнего (прикладного).

Встроенное ПО «ВDKG25», размещаемое в процессе производства в энергонезависимой части памяти микропроцессора блока детектирования БДКГ-25, позволяет осуществлять непосредственно процесс измерения, статистическую обработку и хранение результатов измерений, проведение самодиагностики и предоставление полученной информации для передачи по интерфейсу связи. Встроенное ПО защищено от непреднамеренных и преднамеренных изменений пломбой. Доступ к микроконтроллеру исключен конструкцией блоков детектирования БДКГ-25. Защитная пломба ограничивает доступ к ПО, при этом ПО не может быть модифицировано без нарушения защитной пломбы. Кроме того, изменение ПО невозможно без специализированного оборудования изготовителя. Встроенное ПО не требует специальных средств защиты от преднамеренных и непреднамеренных изменений.

Прикладное ПО состоит из программ «BDKG25TOOL» и «SARK2».

Программа «BDKG25TOOL» предназначена для управления процессом измерения, настройки и вывода информации о состоянии блока детектирования БДКГ-25.

Программа «SARK2» ведет мониторинг данных измерений всех блоков детектирования БДКГ-25 с последующим сохранением в базе данных. Одновременно результаты измерений индицируются на экране ПЭВМ. Программа «SARK2» ведет журнал событий.

К метрологически значимому относится все ПО сигнализаторов.

Идентификационные данные метрологически значимого ПО приведены в таблице 1.

Таблица 1 - Идентификационные данные метрологически значимого ПО

	- 9
Идентификационные данные (признаки)	Значение
Встроенное ПС)
Идентификационное наименование ПО	BDKG25.hex
Номер версии (идентификационный номер) ПО	1.x.y.z *
	1.0.0.0
Цифровой идентификатор ПО (CRC32)	89b55915
Прикладное ПО)
Идентификационное наименование ПО	BDKG25TOOL.exe
Номер версии (идентификационный номер) ПО	1.x.y.z ***
	1.0.1.125
Цифровой идентификатор ПО (MD5)	599b0c0c08687cee8cb212299dc21339
Идентификационное наименование ПО	SARK2.exe
Номер версии (идентификационный номер) ПО	1.x.y.z ***
	1.0.11.189
Цифровой идентификатор ПО (MD5)	6ad728aff3143d1a5b2817e465e68c62
$\begin{bmatrix} * & & & & & & & & & & & & & & & & & & $	

x = [0...9], y = [0...9], z = [0...999];

Примечания

- 1 Текущий номер версии ПО указывается в разделе «Свидетельство о приёмке» руководства по эксплуатации и в протоколе поверки.
- 2 Цифровой идентификатор ПО приведен только для версий:
 - 1.0.0.0 «BDKG25.hex»;
 - 1.0.1.125 «BDKG25TOOL.exe»;
 - 1.0.11.189 «SARK2.exe».

Влияние ПО учтено при нормировании метрологических характеристик.

В соответствии с Р 50.2.077-2014 уровень защиты встроенного ПО сигнализаторов от непреднамеренных и преднамеренных изменений соответствует уровню «высокий».

^{**} x = [0...99], y = [0...999], z = [0...999].

В соответствии с Р 50.2.077-2014 уровень защиты прикладного ПО сигнализаторов от непреднамеренных и преднамеренных изменений соответствует уровню «средний».

Метрологические и технические характеристики

Таблица 2 - Метрологические характеристики

Таблица 2 - Метрологические характеристики	
Наименование характеристики	Значение
Диапазон измерений мощности дозы рентгеновского и	
гамма-излучений	от 0,1 мкГр/ч до 1 Гр/ч
Диапазон измерений дозы рентгеновского и гамма-	
излучений за время превышения порогового значения	
по мощности дозы	от 0,05 мкГр до 10 Гр
Пределы допускаемой основной относительной	
погрешности при измерении:	
– мощности дозы, мощности дозы в диапазоне от 0,5 до	
1,5 значения порога СЦР при доверительной	
вероятности 0,95	±30 %
- ДОЗЫ	±35 %
Энергетическая зависимость в диапазоне энергий от	
60 кэВ до 3 МэВ регистрируемого рентгеновского и	
гамма-излучений	±35 %
Анизотропия эффективности регистрации излучения	
блока детектирования БДКГ-25 в рабочей	
горизонтальной плоскости в диапазоне углов от 0° до	
360°, не более	±25 %
Доза гамма-излучения, накопленная от момента	
срабатывания блока детектирования БДКГ-25 при	
минимальной СЦР длительностью от 1 мс до 3,3 с и	
установленном пороге срабатывания Рд, равном	
1,08 мГр/ч (0,3 мкГр/с), не более	3,3 Рд=1 мкГр
Интервал времени от момента срабатывания блока	
детектирования БДКГ-25 до момента достижения	
номинального уровня звучания аварийной	
сигнализации, не более	0,5 c
Время полного восстановления работоспособности	
сигнализатора после воздействия в течение 5 мин 10-	
кратного превышения верхнего предела диапазона	
измерений мощности дозы рентгеновского и гамма-	
излучений, не более	5 мин
Звуковое давление устройства звуковой сигнализации	
на расстоянии (1,0±0,1) м, не менее	90 дБ
Время измерения мощности дозы (1 мкГр/ч) при	
статистической погрешности, не превышающей 20 %,	
не более	120 c
Диапазон устанавливаемого порогового уровня	
мощности дозы	от 1 мГр/ч до 1 Гр/ч
Угол обзора устройства световой сигнализации, не	4000
менее	180°

Наименование характеристики	Значение
Радиационная стойкость составных частей	
сигнализатора, ответственных за прохождение	
аварийного сигнала, при однократном воздействии	
дозой смешанного нейтронного и гамма-излучений от	
СЦР, не менее	100 Гр
Время установления рабочего режима, не более	5 мин
Время непрерывной работы, не менее:	
- при питании от сети переменного тока	24 ч
- при автономном питании от полностью заряженной	
аккумуляторной батареи	6 ч
Нестабильность показаний за время непрерывной	
работы при питании от сети переменного тока, не более	5 %
Пределы допускаемой дополнительной относительной	
погрешности при измерении мощности дозы:	
- при изменении температуры окружающего воздуха в	
рабочем диапазоне температур относительно 20 °C (на	
каждые 10 °C)	±5 %
- при изменении относительной влажности воздуха до	
95 % при температуре 35 °C и более низких	
температурах без конденсации влаги относительно	
нормальных условий	±10 %
- при изменении напряжения питания от 195 до 253 В	
при работе от сети переменного тока относительно	
номинального значения	±5 %
- при изменении напряжения питания от 8 до 28 В при	
работе от внутреннего источника питания относительно	
номинального значения	±5 %
Нормальные условия измерений:	
- температура окружающего воздуха, °С	от +15 до +25
- относительная влажность воздуха, %	от 30 до 80
- атмосферное давление, кПа	от 86 до 106,7

Таблица 3 - Основные технические характеристики

тионщи з основные техни неекие хириктеристики			
Наименование характеристики	Значение		
Напряжение питания, В:			
- от сети переменного тока	230 (+23; -35)		
- от полностью заряженной аккумуляторной батареи	12,6 (+1,3; -1,9); 24,0 (+2,6; -3,6)		
Мощность, потребляемая при питании от сети			
переменного тока, не более	80 B×A		
Габаритные размеры составных частей	В пластмассовом	В металлическом	
сигнализатора, мм, не более:	корпусе	корпусе	
- блок детектирования БДКГ-25	-	Æ61×210	
- блок регистрации БР-АТ910	260×180×90	270×168×85	
- устройство сигнализации УС-АТ991с	185×105×98	185×141×112	
- устройство звуковое УЗ-АТ993	126×124×95	125×133×125	
- блок клеммный БК3/5	134×125×64	-	
- блок клеммный БК4/5	134×132×64	-	
- коммутатор К2, К2/3с	102×102×55	-	

Наименование характеристики	Значение		
- коммутатор КЗ	102×124×55	-	
- блок управления БУ-АТ980	-	400×300×150	
- оповещатель АСТО 12/1	350×130×45	-	
- устройство выключения звука УВЗ1	151×105×105	-	
	В пластмассовом	В металлическом	
Масса составных частей сигнализатора, кг, не более:	корпусе	корпусе	
- блок детектирования БДКГ-25	-	0,6	
- блок регистрации БР-АТ910	0,7	1,9	
- устройство сигнализации УС-АТ991с	0,4	1,4	
- устройство звуковое УЗ-АТ993	0,35	0,9	
- блок клеммный БК3/5, БК4/5	0,3	_	
- коммутатор К2, К2/3с, К3	0,3	-	
- блок управления БУ-АТ980	-	7,8	
- оповещатель АСТО 12/1	0,4	-	
- устройство выключения звука УВЗ1	0,7	-	
Рабочие условия эксплуатации:			
а) температура окружающего воздуха, °С			
- для блока детектирования БДКГ-25, блока			
регистрации БР-АТ910, устройства звукового УЗ-			
АТ993, устройства выключения звука УВ31,			
устройств сигнализации, коммутаторов, блоков			
клеммных и клеммных коробок	от -40 до +50		
- для остальных составных частей сигнализатора	от -30	до +50	
б) относительная влажность воздуха, %, не более			
- при температуре +35 °C и более низких			
температурах без конденсации влаги для блока			
детектирования БДКГ-25, блока регистрации БР-			
АТ910, устройства звукового УЗ-АТ993, устройства			
выключения звука УВЗ1, блока управления БУ-			
АТ980 устройств сигнализации, коммутаторов,			
блоков клеммных и клеммных коробок	до 95		
- при температуре +30 °C и более низких			
температурах без конденсации влаги для остальных			
составных частей сигнализатора	до 75		
- атмосферное давление, кПа	от 84 д	to 106,7	

Знак утверждения типа

наносится на этикетки составных частей сигнализатора автоматизированным методом с использованием программных средств и на титульный лист руководства по эксплуатации методом компьютерной графики.

Комплектность средства измерений

Таблица 4 – Комплектность сигнализаторов

Tuomingu Trominguentino eta em manno e	F		
Наименование, тип	Обозначение	Количество	Примечание
Блок регистрации БР-АТ910	ТИАЯ.468332.031 ТИАЯ.468332.031-01 ¹⁾	1	
Блок детектирования гамма- излучения БДКГ-25	ТИАЯ.418269.085	от 1 до 3	
Устройство звуковое УЗ-АТ993	ТИАЯ.468231.003	1 ²⁾	

Наименование, тип	Обозначение	Количество	Примечание
Устройство сигнализации	ТИАЯ.468239.008-01		
УС-AT991c	ТИАЯ.468239.008-05 1)	1 2)	
Коммутатор К2/3с	ТИАЯ.468347.013	от 1 до 3	
Коммутатор К2	ТИАЯ.468347.006	1	
Коммутатор К3	ТИАЯ.468347.004	1 2)	
Блок клеммный КК3/5	ТИАЯ.468347.021	1 2)	По заказу
Блок клеммный БК4/5	ТИАЯ.468347.021-01	1 2)	По заказу
Блок управления БУ-АТ980	ТИАЯ.468332.036	1	
			Устанавлива-
			ется в БУ-
Аккумуляторная батарея		2	AT980
Устройство выключения звука УВЗ1	ТИАЯ.468381.037	1	
Оповещатель АСТО 12/1	ТУ ВҮ 101272822.011-2005	1	
Комплект монтажных частей	ТИАЯ.412914.043	1	По заказу
Комплект принадлежностей для			
поверки	ТИАЯ.412914.034-04	1	По заказу
Руководство по эксплуатации	ТИАЯ.412118.027 РЭ	1	
Методика поверки			
МРБ МП.2377-2013	ТИАЯ.412118.027 МП	1	
Упаковка	ТИАЯ.305646.015	1	

Вариант исполнения изделия в металлическом корпусе.

Поверка

осуществляется по документу МРБ МП.2377-2013 (ТИАЯ.412118.027 МП) «Сигнализатор аварийный дозиметрический ДРГ-АТ2331. Методика поверки», утвержденному БелГИМ 27 декабря 2013 г. (с извещением ТИАЯ.18-2018 об изменении №4 от 24 августа 2018 г.).

Основные средства поверки:

- рабочий эталон 2-го разряда по ГОСТ Р 8.804-2012 - установка поверочная дозиметрическая гамма-излучения с набором источников гамма-излучения из радионуклида 137 Cs, диапазон измерений мощности дозы от 0.1 мк 3 В/ч до 10 3 В/ч, погрешность не более ± 5 %.

Допускается применение аналогичных средств поверки, обеспечивающих определение метрологических характеристик поверяемых средств измерений с требуемой точностью.

Знак поверки наносится на свидетельство о поверке.

Сведения о методиках (методах) измерений

приведены в эксплуатационном документе.

Нормативные и технические документы, устанавливающие требования к сигнализаторам аварийным дозиметрическим ДРГ-AT2331

ТУ ВҮ 100865348.032-2013 Сигнализатор аварийный дозиметрический ДРГ-АТ2331. Технические условия

ГОСТ 27451-87 Средства измерений ионизирующих излучений. Общие технические условия

ГОСТ 29074-91 Аппаратура контроля радиационной обстановки. Общие требования

ГОСТ Р 8.804-2012 Государственная система обеспечения единства измерений. Государственная поверочная схема для средств измерений кермы в воздухе, мощности кермы в воздухе, экспозиционной дозы, мощности экспозиционной дозы, амбиентного, направленного и индивидуального эквивалентов дозы, мощностей амбиентного, направленного и индивидуального эквивалентов дозы и потока энергии рентгеновского и гамма-излучений

²⁾ Количество устройств установлено для базовой комплектности и может изменяться по заказу потребителя.

Изготовитель

Научно-производственное унитарное предприятие «ATOMTEX» открытого акционерного общества «МНИПИ» (УП «ATOMTEX»), Республика Беларусь

Адрес: 220005, Республика Беларусь, г. Минск, ул. Гикало, 5

Телефон/факс: (+375 17) 2928142, 2882988

Web-сайт: <u>www.atomtex.com</u> E-mail: <u>info@atomtex.com</u>

Испытательный центр

Экспертиза проведена Федеральным государственным унитарным предприятием «Всероссийский научно-исследовательский институт метрологии им. Д.И. Менделеева»

Адрес: 190005, г. Санкт-Петербург, Московский пр., д. 19

Телефон: (812) 251-76-01; факс: (812) 713-01-14

Web-сайт: http://www.vniim.ru

E-mail: info@vniim.ru

Аттестат аккредитации ФГУП «ВНИИМ им. Д.И. Менделеева» по проведению испытаний средств измерений в целях утверждения типа № RA.RU.311541 от 23.03.2016 г.

Заместитель Руководителя Федерального агентства по техническому регулированию и метрологии

А.В. Кулешов

М.п. «____»____2019 г.