ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Датчики момента ротора ДМР-4

Назначение средства измерений

Датчики момента ротора ДМР-4 (далее датчики) предназначены для преобразования крутящего момента силы в унифицированный аналоговый выходной сигнал постоянного тока.

Описание средства измерений

Принцип действия датчика основан на использовании эффекта изменения сопротивления тензорезистора при воздействии на него деформирующих напряжений.

Датчик состоит из ротора и статора. Ротор представляет собой торсион с фланцами, на измерительном участке которого наклеены тензорезисторы, соединенные по мостовой схеме. На измерительном участке ротора установлены электронный блок и катушка бесконтактной связи со статором для обеспечения питания тензомоста и передачи измерительного сигнала. Статор, содержащий катушку, обкладку связи и электронный модуль устанавливается на неподвижном кронштейне вблизи катушки ротора.

Под действием крутящего момента силы, приложенного к ротору, происходит деформация его измерительного участка, которая воспринимается тензомостом и преобразуется электронным блоком в цифровой код. Цифровой код передается в электронный модуль статора, где преобразуется в унифицированный токовый выходной сигнал (4-20 мА), пропорциональный приложенному крутящему моменту силы.

Внешний вид датчика ДМР-4 представлен на рисунке 1.

Рисунок 1

Метрологические и технические характеристики

Диапазон измерений, кН⋅м	от 0 до 8			
Пределы допускаемой основной приведенной погрешности, %	$\pm 1,0$			
Пределы допускаемой дополнительной приведенной погрешности от изменения				
температуры на каждые 10 °C, %	0,2			
Диапазон выходного сигнала постоянного тока, мА	от 4 до 20			
Напряжение питания постоянного тока, В	от 15 до 36			
Потребляемая мощность, Вт, не более	6,0			
Габаритные размеры ротора, мм, не более	Ø205×175			
Габаритные размеры статора, мм, не более	185×60×80			
Масса ротора, кг, не более	9			
Масса статора, кг, не более	2			
Диапазон рабочих температур, °С	от минус 40 до 50			
Относительная влажность воздуха, %, не более	98			
Средняя наработка на отказ, часов, не менее	10000			

Знак утверждения типа

наносится на корпус датчика методом наклейки и на титульный лист руководства по эксплуатации типографским способом.

Комплектность средства измерений

Таблина 1

$N_{\overline{0}}$	Наименование	Децимальный номер
1	Датчик ДМР-4	1336.404159.002-01
2	Болты крепления статора М6х70 (4 шт.)	
3	Болты крепления ротора M10x50 (16 шт.)	
4	Гайки М10 (16 шт.)	
5	Шайбы 10 (32 шт.)	
6	Проставка*	1336.713616.001
7	Руководство по эксплуатации	1336.404159.002PЭ
8	Методика поверки	

^{*} поставка согласовывается с Заказчиком.

Поверка

осуществляется по документу МП 47–231–2014 «ГСИ. Датчик момента ротора ДМР-4. Методика поверки», утвержденному ФГУП УНИИМ 30 июня 2014 г.

Эталоны, применяемые при поверке: эталоны 1-го разряда по ГОСТ Р 8.752-2011, диапазон от 0 до 8 кH·м, относительная погрешность $\pm 0,2\%$.

Сведения о методиках (методах) измерений

Методика измерений приведена в документе «Датчик момента ротора ДМР-4. Руководство по эксплуатации. 1336.404159.002РЭ».

Нормативные и технические документы, устанавливающие требования к датчикам момента ротора ДМР-4

1 ГОСТ Р 8.752-2011 ГСИ. Государственная поверочная схема для средств измерений крутящего момента силы.

2 Технические условия 1336.404159.002ТУ Датчик момента ротора ДМР-4.

Рекомендации по областям применения в сфере государственного регулирования обеспечения единства измерений

Осуществление производственного контроля за соблюдением установленных законодательством Российской Федерации требований промышленной безопасности к эксплуатации опасного производственного объекта.

Изготовитель

ЗАО «ПРЕДПРИЯТИЕ В - 1336»

Адрес: РФ, 614990, г. Пермь, Комсомольский пр. 34, офис 614

РФ, 614990, г. Пермь, Комсомольский пр. 34, офис 208

тел. (342)219-61-34, 212-96-65, 219-60-30

факс (342)212-97-65,219-61-34

E-mail info@v-1336.ru

Испытательный центр

Государственный центр испытаний средств измерений ФГУП «Уральский научно-исследовательский институт метрологии»

Юридический адрес: 620000, г. Екатеринбург, ул. Красноармейская, 4

Тел. (343) 350-26-18, факс: (343) 350-20-39

e-mail: uniim@uniim.ru

Аккредитован в соответствии с требованиями Федерального агентства по техническому регулированию и метрологии и зарегистрирован в Государственном реестре средств измерений под № 30005-011. Аттестат аккредитации от 03.08.2011 г.

Заместитель			
Руководителя Федерального			
агентства по техническому			
регулированию и метрологии			Ф.В. Булыгин
	М.п.	«»	2014 г.