ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Система измерительная в составе системы управления и защиты реактора (СУЗ) энергоблока №3 Ростовской АЭС

Назначение средства измерений

Система измерительная в составе системы управления и защиты реактора (СУЗ) энергоблока №3 Ростовской АЭС (далее – СУЗ) предназначена для измерений следующих величин, являющихся технологическими параметрами реакторной установки (далее – РУ) энергоблока №3 Ростовской АЭС: температуры, давления, активной электрической мощности, частоты напряжения, нейтронной мощности, периода и реактивности реактора, параметров сейсмических воздействий на энергоблок №3.

Описание средства измерений

СУЗ включает в себя подсистему инициирующей части СУЗ (далее – $A3-\Pi3$) и подсистему исполнительной части СУЗ, входящую в комплекс электрооборудования СУЗ (далее – K3 СУЗ).

СУЗ состоит из двух независимых комплектов оборудования. Каждый измерительный канал (далее – ИК) является троированным: один и тот же параметр измеряется тремя датчиками, измерительная информация с которых поступает на различные входы вторичной части ИК.

Функции АЗ-ПЗ:

- измерения технологических параметров РУ, а также параметров сейсмических воздействий на энергоблок №3;
 - сравнения измеренных параметров с уставками;
 - архивирования измерительной информации, формируемой в подсистеме;
 - обмена измерительной информацией с другими системами энергоблока №3.

Основными измерительными функциями КЭ СУЗ являются:

- измерение давления пара в главном паровом коллекторе (далее $\Gamma\Pi K$) и давления над активной зоной 1 контура;
- отображение поступающих из подсистемы АЗ-ПЗ некорректированных значений мощности реактора.

Состав подсистемы АЗ-ПЗ:

- 1. Аппаратура формирования сигналов защит (далее АФСЗ).
- В состав АФСЗ входят ИК температуры. Термопара типа ТХК-01 (Госреестр №13481-12) осуществляет первичное измерительное преобразование температуры в напряжение. Сигнал поступает на устройство накопления и обработки УНО-324Р, осуществляющее его преобразование в цифровой сигнал и его обработку с последующей передачей в аппаратуру отображения и протоколирования (далее АОП), а также преобразование измерительной информации в аналоговый частотно-модулированный сигнал (10-50) кГц для передачи в другие подсистемы. Компенсация температуры холодного спая осуществляется с помощью термопреобразователя сопротивления ТСП-06 с градуировкой 100П (Госреестр №14457-13).

ИК давления, перепада давления и уровня состоят из датчиков давления ТЖИУ 406-М100-АС (Госреестр №47462-11), преобразующих измеряемые физические величины в унифицированные сигналы силы постоянного тока (4-20) мА (УТС), и УНО-324Р, где производится аналого-цифровое преобразование и обработка с последующей передачей в АОП, а также преобразование измерительной информации в аналоговый частотно-модулированный сигнал (10-50) кГц для передачи в другие подсистемы.

В состав АФСЗ входят расчетные ИК разностей температур. Расчет производится на основе измерительной информации ИК температуры и давления. При этом давление пересчи-

тывается в температуру насыщения воды на основе таблиц, занесенных в память УНО-324Р.

В ИК активной мощности сигнал с измерительных трансформаторов тока ТОЛ-СЭЩ-10 (Госреестр № 32139-11) и напряжения НОЛ-СЭЩ-6-У2 (Госреестр № 35955-12) поступает на измерительный преобразователь ФЕ1883-АД (Госреестр № 43479-09), осуществляющий расчет активной мощности. Измерительная информация с преобразователя поступает в виде УТС на УНО-324Р, где производится аналого-цифровое преобразование и обработка с последующей передачей в АОП, а также преобразование измерительной информации в аналоговый частотно-модулированный сигнал (10-50) кГц для передачи в другие подсистемы.

Частота питания ГЦН измеряется преобразователем ФЕ1883-АД, измеряющим частоту сигнала, поступающего с измерительного трансформатора напряжения. Частота преобразуется в УТС и поступает на УНО-324Р, где производится аналого-цифровое преобразование и обработка с последующей передачей в АОП, а также преобразование измерительной информации в аналоговый частотно-модулированный сигнал (10-50) кГц для передачи в другие подсистемы.

2. Аппаратура контроля нейтронного потока (далее – АКНП).

В состав ИК нейтронной мощности реактора входят датчики нейтронного потока УДПН-33Р, УДПН-37Р (Госреестр № 45141-10), выходным сигналом которых является стохастическая последовательность импульсов, количество которых в единицу времени пропорционально плотности нейтронного потока. Сигнал с датчиков поступает на вспомогательный блок БХ-160Р1, а затем на устройство УНО-325Р, осуществляющее обработку сигнала и его преобразование:

- в цифровой сигнал для передачи в АОП и на цифровые дисплеи БИЦ-98Р;
- в унифицированный сигнал (4-20) мА для передачи в КЭ СУЗ;
- в частотный сигнал в диапазоне (125-18750) Γ ц для передачи в аппаратуру разгрузки и ограничения мощности (далее APOM).

В АКНП также входят расчетные ИК периода и реактивности реактора. Расчет производится в УНО-325Р на основе измерительной информации ИК нейтронной мощности реактора.

Результаты измерений отображаются на цифровых дисплеях БИЦ-98Р, располагающихся на блочном и резервном пунктах управления. Также импульсный сигнал, соответствующий нейтронной мощности реактора, передается в аппаратуру контроля фиксации внутрикорпусных устройств (далее – АК ВКУ).

- 3. Аппаратура контроля загрузки / перегрузки топлива (далее АКП).
- В состав ИК плотности нейтронного потока входят датчики нейтронного потока УДПН-35Р (Госреестр № 45141-10). Сигнал с датчиков поступает через вспомогательные блоки БХ-160Р на устройство УНО-327Р, осуществляющее обработку сигнала и его преобразование в цифровой сигнал для передачи в аппаратуру отображения и протоколирования (АОП) и в аналоговый частотный сигнал (10-50) кГц для передачи на устройства сигнализации БСР-41Р, которые обеспечивают звуковую сигнализацию, тональность которой зависит от измеряемой плотности нейтронного потока.
- В АКП также входят расчетные ИК периода реактора. Расчет производится в УНО-327Р на основе измерительной информации ИК плотности нейтронного потока.
- 4. APOM принимает от AФC3 и АКНП частотные сигналы. В УНО-326Р они преобразуются в цифровые и передаются в АОП.
 - 5. Аппаратура индустриальной антисейсмической защиты (далее АИАЗ).
- В состав ИК сейсмического ускорения входят датчики СД-4 (Госреестр № 40832-09), осуществляющие преобразование измеряемой величины в сигнал УТС и передачу его в АОП через блоки коммутации БКК-01. В АОП (в УНО-328Р) осуществляется аналого-цифровое преобразование этих сигналов, их регистрация, архивирование и отображение на дисплее

УНО-328Р, а также передача в другие системы. Регистрация и архивирование сигналов АИАЗ осуществляется при получении от АИАЗ специального дискретного сигнала.

6. АК ВКУ осуществляет преобразование поступающих из АКНП импульсных частотно-модулированных сигналов в сигналы силы постоянного тока (0-20) мА для передачи в систему контроля вибраций (далее – СКВ).

Сигнал поступает на узел ввода частоты ПТИ-33Р1. Блок ПНО-188Р выполняет считывание данных с регистров узлов ввода частоты ПТИ-33Р1, и производит обработку информации. Модуль AO16-V8 (FASTWEL) выполняет преобразование 12-разрядных сигналов в сигнал (0-5) В, который затем преобразуется в модуле 5В39-03 (Analog Devices) в унифицированный сигнал (0-20) мА, который затем передается в СКВ.

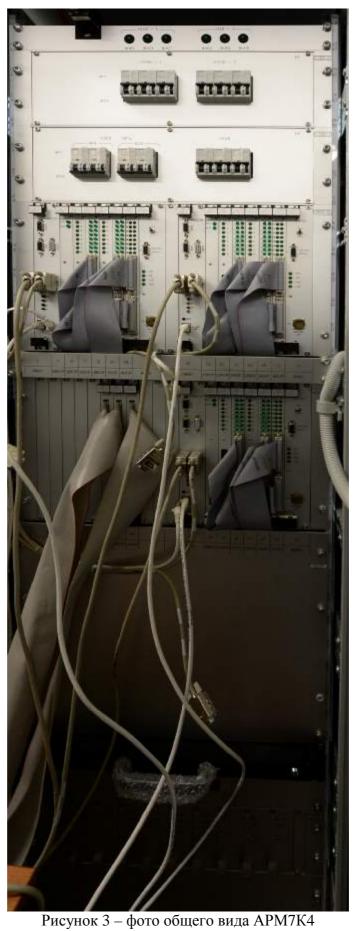

- 7. В функции АОП входят: сбор, обработка, архивация, отображение и передача измерительной информации в систему верхнего блочного уровня (далее СВБУ).
- В состав АОП входит устройство обработки и накопления УНО-328Р, осуществляющее:
- прием цифровых сигналов от подсистем, их регистрацию, архивирование и отображение на дисплее УНО-328P;
 - прием и преобразование аналоговых сигналов от АИАЗ;
- передачу измерительной информации в другие системы: СВБУ, систему контроля управления и диагностики (СКУД) и аппаратуру сигнализации первопричины, реализованную на типовых программно-технических средствах (АСП ТПТС).
- В КЭ СУЗ входят ИК аналого-цифрового преобразования УТС, осуществляющегося в устройстве АРМ7К4. Наряду с преобразованием осуществляется обработка, архивирование и передача измерительной информации в устройство ШЛОСК4, на серверы ШСРК4 и на БПУ, где происходит ее отображение.
- В состав ИК давления входят датчики давления ТЖИУ406-М100-АС (Госреестр №47462-11) осуществляющие преобразование физической величины в УТС. Сигналы с датчиков поступает в устройство АРМ7К4, где осуществляется их аналого-цифровое преобразование, обработка, архивирование и передача в устройство ШЛОСК4, на серверы ШСРК4 и на БПУ, где происходит отображение измерительной информации.

Рисунок 1 – фото общего вида УНО-324Р

Рисунок 2 – фото общего вида УНО-328Р

Программное обеспечение

Программное обеспечение состоит из программного обеспечения вторичной части СУЗ: модулей, входящих в состав устройств УНО и ПО устройства APM7K4. Идентификационные данные ПО указаны в таблице 1.

Все компоненты вторичной части СУЗ, смонтированы в электротехнических шкафах. Каждый шкаф закрывается на ключ, и имеет функцию сигнализации об открытии двери. Прикладное ПО всех шкафов контролирует версии ПО и контрольные суммы входящих в его состав компонентов, исключая возможность их несанкционированной замены, имеет функцию сигнализации и отключения при несовпадении версий или контрольных сумм.

Уровень защиты ПО от изменений – «С».

Метрологические характеристики СУЗ оцениваются с учетом влияния ПО всех компонентов, входящих в ее состав.

Таблица 1 – Идентификационные данные программного обеспечения

Harricananar	II	II as com	II	A
Наименование	Идентификаци-	Номер версии	Цифровой	Алгоритм вы-
программного	онное наимено-	(идентификаци-	идентификатор	числения циф-
обеспечения	вание про-	онный номер)	программного	рового иденти-
	граммного	программного	обеспечения	фикатора
	обеспечения	обеспечения		1
ПО блока ПНО- 329Р	РУНК.01058-01	Не ниже 01058- 01	По номеру версии	Не использует- ся
ПО блока ПНО- 227P	РУНК.01047-01	Не ниже 01047- 01	По номеру вер- сии	Не использует- ся
ПО блока ПНО- 228P	РУНК.01048-01	Не ниже 01048- 01	По номеру вер- сии	Не использует- ся
ПО блока ПНО- 235P	РУНК.01043-01	Не ниже 01043- 01	По номеру вер- сии	Не использует- ся
ПО блока ПНО- 236P	РУНК.01041-01	Не ниже 01041- 01	По номеру вер- сии	Не использует- ся
ПО блока БНО- 192Р	РУНК.01045-01	Не ниже 01045- 01	По номеру вер- сии	Не использует- ся
ПО устройства АРМ7К4	ПИБШ.50657- 01	Не ниже 50657- 01	По номеру вер- сии	Не использует- ся

Таблица 2 - Состав и основные характеристики ИК подсистемы АФСЗ (кроме ИК электрической мощности и частоты питания ГЦН, данные о

которых приведены в Таблице 3)

				Датчик			Вторичная част		Погреш-
№	Измеряемая величина	Диапазон измерений	Тип	Выходной сигнал (вход- ной сигнал вторичной части)	Пределы до- пускаемой основной погрешно- сти*	Тип	Выходной сиг- нал	Пределы допускаемой погрешно- сти* в рабочих условиях	ность* ИК в рабочих условиях
1	2	3	4	5	6	7	8	9	10
1	Температура воды в «горячей нитке» реакторной установки	от 0 до 400 °C	TXK-01	От 0 до 31,49 мВ	Класс до- пуска 2	УНО- 324Р	12 бит на вы- ходе модуля БВЦ-263Р (в АОП)		± 1,05 %**
2	Температура воды в «хо- лодной нитке» реакторной установки	от 0 до 400 °C		От 0 до 31,49 мВ	nyeka 2	(мо- дуль ППН-	12 бит на вы- ходе модуля БВЦ-263Р	± 0,5 %	
3	Температура «свободных концов» термопар ИК №1,2	от 0 до 100 °C	ТСП-06 (100П)	От 100 до 139,1 Ом	Класс до- пуска А	142P)	(сигнал в АОП);		± 0,59 %
4	Давление теплоносителя над активной зоной (давление в первом контуре)	от 0 до 250 кгс/см ²	ТЖИУ 406ДИ- М100-АС	От 4 до 20 мА	± 0,25 %	УНО-	от 10 до 50 кГц (сигнал в АКНП)		± 0,71 %
5	Давление пара в главном паровом коллекторе	от 0 до 100 кгс/см ²	ТЖИУ 406ДИ- M100-AC	От 4 до 20 мА	± 0,25 %	324P	12 бит на вы-		± 0,71 %
6	Давление пара в паропроводе второго контура	от 0 до 100 кгс/см ²	ТЖИУ 406ДИ- M100-AC	От 4 до 20 мА	± 0,25 %	(модуль ППН-	ходе модуля БВЦ-263Р	± 0,25 %	± 0,71 %
7	Давление воздуха под гер- мооболочкой	от минус 0,5 до 0,5 кгс/см ²	ТЖИУ 406ДИВ- М100-АС	От 4 до 20 мА	± 0,25 %	141P)	выц-2031 (сигнал в АОП)		± 0,71 %
8	Перепад давления воды на ГЦН	от 0 до 10 кгс/см ²	ТЖИУ 406ДД- М100-АС	От 4 до 20 мА	± 0,25 %		AOII)		± 0,71 %

^{* -} границы интервала допускаемой погрешности, приведенной к диапазону измерений; ** - с учетом погрешности канала компенсации температуры холодного спая.

Продолжение таблицы 2

1	2	3	4	5	6	7	8	9	10
9	Уровень питательной воды в парогенераторе	от 0 до 400 см	ТЖИУ 406ДД-М100-АС	От 4 до 20 мА	± 0,25 %	УНО- 324Р			± 0,71 %*
10	Уровень теплоносителя в компенсаторе давления	от 0 до 630 см	ТЖИУ 406ДД-М100-АС	От 4 до 20 мА	± 0,25 %			± 0,25 %	± 0,71 %*
11	Давление пара в паропроводе за регулирующими клапанами ТПН	от 0 до 10,0 кгс/см ²	ТЖИУ 406ДА-М100-АС	От 4 до 20 мА	± 0,25 %	(модуль ППН- 141Р)	12 бит на вы- ходе модуля БВЦ-263Р		± 0,71 %*
12	ИК разности температуры насыщения в первом контуре и в «горячей нитке»	от 10 до 100°C	Расчет производится на основе температуры насыщения (по изм ции ИК № 4) и измерительной	ой информа-		66ц-2037 (сигнал в АОП)	Пределы	допускаемой	
13	ИК разности температур насыщения в первом и во втором контурах		Расчет производится на основе косвенного измерения 324Р приведенной по						-

^{* -} В данную погрешность не входит методическая составляющая

Таблица 3а – Состав и основные характеристики ИК активной мощности и частоты питания ГЦН, первичная часть (подсистема АФСЗ)

	Измеряе-			Транс	форматоры			Нормирующий пр	еобразователь
№	мая вели-			Коэффици- Класс		Вых. сигнал (вх. сиг-		Вых. сигнал (вх.	Границы интервала
112	чина измерений	Тип	ент преоб-	точности	нал нормирующего	Тип	сигнал вторич-	допускаемой основной	
	чина		разован		по ГОСТ	преобразователя)		ной части)	погрешности
1	Активная	от 0 до	Трансформатор тока ТОЛ-СЭЩ-10	1500/5	0,5S	от 0,05 до 5 А	ФЕ1883- АД-2-3-	от 4 до 20 мА	± 1,0 % (приведена к номинальному значе-
1	мощность ГЦН	16368 кВт	Зт Трансформатор напряжения	8 квт Трансформатор 6300:√3/ 3-03-N-1		3-03-N-1	01 4 до 20 мА	нию мощности 866 В·А)	
2	Частота пи- тания ГЦН	от 45 до 55 Гц	Трансформатор напряжения НОЛ-СЭЩ-6-У2	6000/100	1,0	от 20 до 120 В	ФЕ1883- АД-2-3- 3-03-N-1	от 4 до 20 мА	$\pm0,63\%$ (приведена к номинальному значению 50Γ ц)

Таблица 3б – Состав и основные ха	арактеристики ИК элект	рической мощности и частоты питани	я ГЦН, втог	оичная часть (подсистема АФСЗ)

	,	Вторичная ч	ласть ИК	Границы интервала допус-
No	Тип	Выходной сигнал	Пределы допускаемой погрешности приведенной к диа-	каемой относительной по-
	ТИП	Выходной сигнал	пазону изменения входного сигнала в рабочих условиях	грешности ИК
1	УНО-324Р (модуль	<u> </u>	± 0,25 %	± 2,5 % *
	ППН-141Р)	БВЦ-263Р (сигнал в АОП)	,	,
		12 бит на выходе модуля		
	УНО-324Р (модуль	БВЦ-263Р (сигнал в АОП)	0.25.04	0.72 0/ stute
2	ППН-141Р)	И	± 0,25 %	± 0,73 % **
		от 10 до 50 кГц (сигнал в АКНП,		
		APOM)		

^{*} - значение рассчитано для номинальных значений тока и напряжения $I_{\text{ном}}$ =5 A, $U_{\text{ном}}$ =100 B; при других значениях расчет производить по формуле:

$$\mathsf{d}_{\mathit{HK}} = 1{,}15\sqrt{\mathsf{d}_{\mathit{TT}}^{\;2} + \mathsf{d}_{\mathit{TH}}^{\;2} + \mathsf{d}_{\mathit{QP}}^{\;2} + \mathsf{d}_{\mathit{JC}}^{\;2} + (\mathsf{g}_{\mathit{\Phi E}} \times \frac{P_{\mathit{HOM}}}{P_{i}})^{2} + (\mathsf{g}_{\mathit{BMK}} \times \frac{\mathsf{D}i^{\mathit{ex}}}{i_{i}^{\mathit{ex}} - 4})^{2}}$$
, где

 $\delta_{\text{ИК}}$ – относительная погрешность измерительного канала;

 δ_{TT} (δ_{TH}) – относительная амплитудная погрешность трансформатора тока (напряжения);

 $\delta_{\Theta P}$ - составляющая погрешности ИК, обусловленная угловыми погрешностями трансформаторов,

$$d_{QP} = 0.029 \times (Q_{TT} + Q_{TH}) \frac{\sqrt{1 - \cos^2 j}}{\cos j}$$

 Θ_{TT} (Θ_{TH}) – предел допускаемой угловой погрешности, в минутах, трансформатора тока (напряжения); $\cos \varphi$ – косинус угла между током и напряжением (расчет проводился для значения 0,8);

 $\delta_{\rm JC}$ – относительная погрешность измерительного канала;

γ_{ФЕ} – приведенная погрешность нормирующего преобразователя;

P_{HOM} – номинальное значение мощности с учетом коэффициентов трансформации ТТ и ТН, к которому приведена γ_{ΦΕ};

Р_і – измеренное значение мощности с учетом коэффициентов трансформации ТТ и ТН (расчет проводился для значения 866 В∙А);

 $\gamma_{\text{ВИК}}$ - приведенная погрешность вторичной части ИК (приведена к);

 $\Delta i^{\text{вх}}$ - диапазон изменения входного токового сигнала вторичной части;

 $i^{\text{вх}}_{\ \ i}$ – поступившее значение входного токового сигнала, (расчет проводился для значения 20 мА).

** - погрешность ИК приведена к номинальному значению частоты (50 Гц), трансформатор напряжения не вносит погрешности.

Таблица 4 - Состав и основные характеристики ИК подсистемы АКНП

No	2		•	Į	Ц атчик			Вторичная	часть	
	Измеряемая ве- личина	Диапа- зон из- мере- ний*	Плот- ность по- тока ней- тронов $c^{-1} \cdot cm^{-2}$	Тип	Вых. сиг- нал датчи- ка (вх. сиг- нал вто- ричной части)	Пределы допускае- мой по- грешности в раб. ус- ловиях**	Тип	Выходной сигнал	Пределы допускае- мой погрешности в рабочих условиях	Границы интервала допускаемой погрешности ИК в рабочих условиях
	1 2	3	4	5	6	7	8	9	10	11
	Нейтронная мощность реактора в поддиапазоне ПД	от 10 ⁻⁷ до 10 ⁻² % от N _{ном***}	от 1,0 до 1,0·10 ⁶	УДПН- 33Р	от 0,5 до 5·10⁴ имп./с	Относи- тельная ± 20 %		12 бит на выходе	Относительная ± 10 %	Относительная ± 25,8 %
2	Нейтронная мощ- ность реактора в поддиапазоне РД1	от 1·10 ⁻³ до 150 % от N _{ном}	от 1,0·10 ⁴ до 2,1·10 ⁹	УДПН- 37Р	от 0,5 до 7,5·10⁴ имп./с	Относи- тельная ± 20 %	УНО- 325Р	модулей БНО, БИЦ (сигнал в АОП, на БПУ, РПУ) от 4 до 20 мА (сигнал в КЭ СУЗ)	Относительная \pm 10 % (от $1 \cdot 10^{-2}$ до 1 % $N_{\text{ном}}$) Относительная \pm 1 % (от $1 \cdot$ до 150 % $N_{\text{ном}}$)	Относительная ± 25,8 % (от 1·10 ⁻² до 1 % N _{ном}) Относительная ± 23,2 % (от 1·до 150 % N _{ном})
3	Нейтронная мощность реактора в поддиапазоне РД2	от 1 до 150 % от N _{ном}	от 5,0·10 ⁶ до 2,1·10 ⁹	УДПН- 33Р	от $5 \cdot 10^2$ до $7,5 \cdot 10^4$ имп./с	Относи- тельная ± 10 %		от 0,5 до 75 кГц (в АК ВКУ)	Относительная ± 1 %	Относительная ± 11,7 %

^{* -} при расчете поддиапазонов контроля в единицах плотности потока нейтронов предполагается, что плотность потока нейтронов в каналах ионизационных камер на уровне центра активной зоны, соответствующая номинальной мощности, составляет 1,4*10⁹ см⁻² *c⁻¹

** - от 1 до 80 °C

^{*** -} в данном ИК нейтронная мощность реактора отображается в диапазоне от 10^{-8} до 10^{-2} % от $N_{\text{ном}}$. Нейтронная мощность в диапазоне от 10^{-8} до 10^{-7} % от $N_{\text{ном}}$ рассчитывается путем усреднения измерительной информации, и погрешность в данном диапазоне не нормируется.

Продолжение таблицы 4

1	2	3	4	5	6	7	8	9	10	11
4	Период ре- актора	от 5 до 999 с	Расчетные параметры на основе измерительной информации о мощности реактора				УНО- 325Р	12 бит на выходе мо- дулей БНО, БИЦ (сигнал в АОП, на БПУ, РПУ)	$\pm 20\%$ от значения уставки диапазоне от $1\cdot 1$	еденной погрешности расчета: по периоду реактора (T_{ycr}^*) в 0^{-8} до 1 % от $N_{\text{ном}}$, оне от 1 до 150 % от $N_{\text{ном}}$
5	Реактив- ность реак- тора	от минус 25 до +1 (в ед. ρ/βэфф.)		(ИК № 1-3)			B113 , 1113)	ч	сительной погрешности рас- ета 20 %	

^{* -} Туст равно 10, 20 и 40 с для сигналов аварийной защиты, предупредительной защиты и запрета по периоду реактора на действия соответственно.

Примечания:

ПД – пусковой диапазон;

РД – рабочий диапазон;

Период реактора – время, за которое мощность ядерного реактора изменяется в е раз (~2,7 раза).

Реактивность реактора – безразмерная величина, выражаемая соотношением:

$$\rho = \frac{k_{ef} - 1}{k_{ef}}$$

где $k_{\rm E} f$ - эффективный коэффициент размножения нейтронов. В АКНП измеряется в единицах $r \not b$ эфф, где b эфф — эффективная доля выхода запаздывающих нейтронов.

Таблица 5 – Состав и основные характеристики ИК подсистем АКП, АИАЗ, АОП

				Датчик			Вторичная	часть	Пределы до-
No	Измеряемая величина	Диапазон		Вых. сигнал (вх. сигнал	Пределы допус-		Выходной	Пределы допус- каемой погреш-	пускаемой погрешности
31=	тізмерлемал вели інпа	измерений	Тип	вторичной	каемой погреш-	Тип	сигнал	ности в раб. ус-	ИК
				части)	пости			ЛОВИЯХ	
АКП									
	Плотность нейтронного	от 1,4·10 ⁻³		от 5⋅10 ⁻² до	Относительная ±		12 бит	Относительная	Относитель-
1	потока	до $5,4\cdot 10^2$	УДПН-35Р	5·10 ⁴ имп./с	20 %		(сигнал в	± 1 %	ная
	Потока	$c^{-1} \cdot cm^{-2}$		<i>3</i> °10 имп./с	20 70	УНО-	АОП)	± 1 /0	± 21 %
			Величина рас	ссчитывается во	вторичной части	327P	12 бит	Пределы допуск	аемой приве-
2	Период реактора	от 5 до 999 с	на основе ин	формации о пло	ормации о плотности нейтрон-		(сигнал в	денной погрешн	юсти расчета
			ного потока	а (ИК № 1 насто	ящей таблицы)		АОП)	± 20	%
		A	ИАЗ				АОП		
		от 0,05 до			Основная*	УНО-		Относительная	Абсолютная
3	Сейсмоускорение	$5,4 \text{ m/c}^2$	СД-4 от 4 до 20 м.		± 1,5 %	328P	12 бит	± 1 %	± (0,081 +
		J,→ M/C			± 1,3 %	328P		_ 1 70	$0.01 \cdot a_{\text{изм}}) \text{ м/c}^2$

^{* -} пределы основной погрешности, приведенной к пороговому значению $\Pi1$ (равному 0,67 м/с²), даны для нормальной температуры (20 ± 2) °C

Таблица 6 – Состав и основные характеристики ИК подсистем АРОМ, АК ВКУ

No	Тип ИК	Диапазон входного сигнала	Тип компонента ИК	Выходной сиг-	Пределы допускаемой погреш-					
J1≌	T WILL THE	дианазон входного сигнала	THII ROMIIOHCHIA HIX	нал	ности в раб. условиях					
	APOM									
1		от 10 до 50 кГц (от подсистемы			Относительная					
1	ИК преобразования частот-	АФСЗ)	УНО-326Р	12 бит (сигнал в	± 0,5 %					
2	ных сигналов	от 125 до 18750 Гц (от подсисте-	3110-3201	АОП)	\pm 0,5 % ot N _{hom}					
		мы АКНП)			± 0,5 /0 01 1\(\text{HOM}\)					
	АК ВКУ									
			ПТИ-33Р1 =>	12 бит =>						
3	ИК преобразования час-	от 0,5 до 75 кГц (от подсистемы	=> ΠHO-188P =>	=> 12 бит=>	Приведенная					
	тотных сигналов	отных сигналов АКНП)		=> от 0 до 5 В=>	± 1 %					
			=> 5B39-03 =>	=> от 0 до 20 мА						

Таблица 7 – Состав и основные характеристики ИК подсистемы КЭ СУЗ

			Датчик				Пределы до-		
№	Измеряемая величина	Диапазон измерений	Тип	Вых. сигнал (вх. сигнал вторичной части)	Пределы до- пускаемой погрешности в рабочих условиях	Тип	Выходной сигнал	Пределы до- пускаемой по- грешности в раб. условиях	пускаемой основной по- грешности ИК
1	ИК преобразования унифицированного сигнала силы постоянного тока	от 4 до 20 мА		-				± 0,25 % (при- веденная к диапазону)	± 0,25 % (приведенная к диапазону)
2	Давление пара в ГПК	от 4,9 до 7,5 МПа	ТЖИУ406ДИ -M100-AC	от 4 до 20	± 0,25 % (приведенная к диапазону)	АРМ7К4	12 бит	± 0,25 % (при- веденная к диапазону)	Приведенная
3	Давление над активной зоной первого контура	от 14,5 до 17,5 МПа	ТЖИУ406ДИ -M100-AC	мА	± 0,25 % (приведенная к диапазону)			± 0,25 % (приведенная к диапазону)	± 0,5 %

Для датчиков давления условия эксплуатации согласно ГОСТ 15150-69 для исполнения УХЛ 3.1.

Для преобразователей ФЕ1883-АД:

температура 25±5 °С;

относительная влажность воздуха до 80 % при температуре не более 25 °C, без

конденсации влаги.

Для вторичной части:

температура от 10 до 40 °C;

относительная влажность воздуха до 80 % при температуре не более 25 °C, без

конденсации влаги.

Знак утверждения типа

Знак утверждения типа наносится типографским способом на титульные листы следующих документов:

- «Инструкция по эксплуатации комплекса оборудования системы управления и защиты реакторной установки (АСУЗ инициирующая часть)» ИЭ.3.АСУЗ.27.160;
- «Инструкция по эксплуатации. Аппаратура формирования сигналов защит. Энергоблок №3 Ростовской атомной станции» ИЭ.3.27.162;
- «Инструкция по эксплуатации. Аппаратура разгрузки и ограничения мощности реактора» ИЭ.3.РОМ.27.04;
- «Инструкция по эксплуатации аппаратуры индустриальной антисейсмической защиты (АИАЗ)» ИЭ.3.АИАЗ.27.164;
- «Инструкция по эксплуатации. Аппаратура контроля перегрузки АКП-02Р. Энергоблок №3 Ростовской атомной станции» ИЭ.3.АКП.27.86;
- «Калининская АЭС. Блок №4. Ростовская АЭС. Блок №3. Комплекс электрооборудования системы управления и защиты реактора ВВЭР-1000 (В-320). Общие сведения. Руководство по эксплуатации» ТАИК.500051.104 РЭ.

Комплектность средства измерений

Комплектность поставки ИС УСБТ:

- датчики, программные, технические и программно-технические средства;
- комплект ЗИП и инструменты;
- эксплуатационная документация;
- методика поверки «Система измерительная в составе системы управления и защиты реактора (СУЗ) энергоблока №3 Ростовской АЭС. Методика поверки».

Поверка

осуществляется по документу МП 58409-04 «Система измерительная в составе системы управления и защиты реактора (СУЗ) энергоблока №3 Ростовской АЭС. Методика поверки», утвержденному Φ ГУП «ВНИИМС» в августе 2014 г.

Перечень основных средств поверки приведен в таблице 8.

Таблица 8 – Основные средства поверки СУЗ

Эталонное средство измерений	Тип	Основные характеристики
Калибратор-измеритель унифицированных сигналов эталонный	ИКСУ- 2000	Диапазон воспроизведения напряжения от минус 10 до 100 мВ, основная погрешность $\pm (14\cdot 10^{-5} U +6)$ мкВ.
Магазин сопротивлений	P4831	Диапазон воспроизведения сопротивления постоянному току от 0,01 до 111111,10 Ом ступенями через 0,01 Ом. Класс точности $0,02/2\cdot10^{-6}$.
Калибратор процессов многофункциональный	FLUKE 726	Диапазон выходного/входного сигнала от 0 до 24 мА Пределы допускаемой основной погрешности: $\pm (0,01\cdot 10^{-2}\cdot I_{\text{восп}} + 2 \text{ ед.мл.р})$ — в режиме воспроизведения $\pm (0,01\cdot 10^{-2}\cdot I_{\text{изм.}} + 2 \text{ ед.мл.р})$ — в режиме измерения
Частотомер	CNT- 91R	Диапазон измерения частоты от 0,001 Γ ц до 300 М Γ ц, пределы допускаемой относительной погрешности: до 1 Γ ц – ± 2,5 · 10 ⁻² %; до 10 Γ ц – ± 2,5 · 10 ⁻³ %; до 100 Γ ц – ± 2,5 · 10 ⁻⁴ %; до 1 к Γ ц – ± 2,5 · 10 ⁻⁵ %; до 10 к Γ ц – ± 2,7 · 10 ⁻⁶ %; до 100 к Γ ц – ± 4,5 · 10 ⁻⁷ %.
Генератор сигналов произвольной формы	33250A	Диапазон воспроизведения прямоугольных импульсов от 1 мк Γ ц до 80 М Γ ц, пределы допускаемой относительной погрешности $\pm 2 \cdot 10^{-6}$ %

Сведения о методиках (методах) измерений

приведены в документах:

- «Инструкция по эксплуатации комплекса оборудования системы управления и защиты реакторной установки (АСУЗ инициирующая часть)» ИЭ.3.АСУЗ.27.160;
- «Инструкция по эксплуатации. Аппаратура формирования сигналов защит. Энергоблок №3 Ростовской атомной станции» ИЭ.3.27.162;
- «Инструкция по эксплуатации. Аппаратура разгрузки и ограничения мощности реактора» ИЭ.3.РОМ.27.04;
- «Инструкция по эксплуатации аппаратуры индустриальной антисейсмической защиты (АИАЗ)» ИЭ.3.АИАЗ.27.164;
- «Инструкция по эксплуатации. Аппаратура контроля перегрузки АКП-02Р. Энергоблок №3 Ростовской атомной станции» ИЭ.3.АКП.27.86;
- «Калининская АЭС. Блок №4. Ростовская АЭС. Блок №3. Комплекс электрооборудования системы управления и защиты реактора ВВЭР-1000 (В-320). Общие сведения. Руководство по эксплуатации» ТАИК.500051.104 РЭ.

Нормативные и технические документы, устанавливающие требования к СУЗ

ГОСТ Р 8.596-2002	ГСИ. Метрологическое обеспечение измерительных систем. Ос-
	новные положения
ГОСТ 8.009-84	ГСИ. Нормируемые метрологические характеристики средств
	измерений

590 85 090. 33533.036-Ф.ТЗ-2.М Ростовская АЭС. Блок №3. Частное техническое задание на создание подсистемы инициирующей части СУЗ (АЗ-ПЗ УСБИ)

590 85 090.33533.036-Ф.ТЗ-3.М Ростовская АЭС. Блок №3. Частное техническое задание на создание комплекса электрооборудования системы управления и защиты (КЭ СУЗ)

Рекомендации по областям применения в сфере государственного регулирования обеспечения единства измерений

Осуществление деятельности в области использования атомной энергии.

Изготовитель

Филиал ОАО «Концерн Росэнергоатом» «Ростовская атомная станция» (Ростовская АЭС), г. Волгодонск Ростовской обл.

Юридический адрес: 109507, г. Москва, ул. Ферганская, д.25 Почтовый адрес: 347388, Ростовская обл. г. Волгодонск-28

Тел.(8639) 22-37-30 Факс (8639) 22-48-55

Испытательный центр

Федеральное государственное унитарное предприятие «Всероссийский научноисследовательский институт метрологической службы» (ФГУП «ВНИИМС»)

Адрес: 119361, г. Москва, ул. Озерная, д.46 Тел./факс: (495)437-55-77 / 437-56-66;

E-mail: office@vniims.ru, www.vniims.ru

Аттестат аккредитации Φ ГУП «ВНИИМС» по проведению испытаний средств измерений в целях утверждения типа № 30004-13 от 26.07.2013 г.

Заместитель Руководителя Федерального агентства по техническому регулированию и метрологии

Ф.В. Булыгин

«___»____2014 г.

М.п.