ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Счетчики статические трехфазные переменного тока активной и реактивной энергии MT38x

Назначение средства измерений

Счетчики статические трехфазные переменного тока активной и реактивной энергии MT38x (далее – счетчики) предназначены для измерения и регистрации активной и реактивной электрической энергии и времени.

Описание средства измерений

Счетчики выпускаются в нескольких исполнениях, отличающихся классами точности и выходными интерфейсами.

Исполнения счетчиков отображаются в обозначении, структура обозначения счетчиков приведена в таблице 1.

Таблица 1 – Обозначение счетчиков MT38x-Dx(Tx)AxyRxy-I4VxyPxBxyLxy-MxKxyZ

		оозна	чение счетчиков MT38x-Dx(Tx)AxyRxy-I4VxyPxBxyLxy-MxKxyZ				
Парамет	p						
Мнемоническое обозначение	X	у	Значение параметра				
MT38		-	Счетчик со встроенным PLC модемом				
	2	-	Счетчик со встроенным GSM/GPRS модемом				
	3	-	Счетчик с последовательным интерфейсом				
D	1	-	Счетчик непосредственного включения (максимальный ток 85 А)				
	2	-	Счётчик непосредственного включения (максимальный ток 120 А				
T	1	-	Трансформаторный универсальный счетчик (максимальный ток 6A)				
A	4	*	Класс точности 1 по ГОСТ 31819.21-2012				
	5	*	Класс точности 2 по ГОСТ 31819.21-2012				
	*	1	Измерение активной энергии в одном направлении				
	*	2	Измерение активной энергии в двух направлениях				
	*	4	Измерение абсолютного значения активной энергии				
R	5	*	Класс точности 2 по ГОСТ 31819.23-2012				
	6	*	Класс точности 3 по ГОСТ 31819.23-2012				
	*	1	Измерение реактивной энергии в одном направлении				
	*	2	Измерение реактивной энергии в двух направлениях				
	*	6	Измерение реактивной энергии в четырех квадрантах				
S	5	*	Определение полной энергии с погрешностью не более ± 2%				
	6	*	Определение полной энергии с погрешностью не более ± 3%				
	*	3	Вычисление полной энергии как корень квадратный из суммы квадратов приращений активной и реактивной энергии.				
Ι	4	_	Встроенный вспомогательный источник питания (конденсатор)				
V	1	*	Один дискретный вход управления				
	*	2	Вход управляется сигналом напряжения 230 В или 120 В				
	*	3	Вход управления «сухой контакт»				
P	0	-	Внешнее трехфазное устройство управления нагрузкой				
В	1	1	Один высоковольтный выход управления (реле), тип выхода «сухой контакт»				
L	1	1	Один выход управления (твердотельное реле), тип выхода «сухой контакт»				

Параметр						
Мнемоническое обозначение	X	у	Значение параметра			
M	2	-	Встроенные часы с резервным питанием от суперконденсатора			
	3	-	Встроенные часы с резервным питанием от литиевой батареи			
протокол IEC 62056-46, IEC 6 3 - Последовательный интерфейо		-	Инфракрасный оптический порт интерфейса IEC 62056-91 Mode E, протокол IEC 62056-46, IEC 62056-61			
		-	Последовательный интерфейс RS485			
		-	Встроенный РLС модем, протокол IEC 62056-46, IEC 62056-61			
	a	-	Встроенный GSM/GPRS-модем			
g		-	Дополнительный интерфейс M-Bus			
	n	-	Р1 порт			
Z	-	-	Регистрация профиля нагрузки			

Примечание: «*» - параметр может принимать любое значение, указанное в настоящей таблице; «-» - параметр не предусмотрен в обозначении исполнения счетчика.

Принцип действия счетчиков основан на преобразовании и измерении напряжения сети, а также измерении напряжения, пропорционального входному току, возникающего в воздушных зазорах петель Роговского.

Измерительная схема, преобразующая ток, представляет собой петлю Роговского. Для компенсации влияющих факторов используется вторая петля Роговского. В качестве датчика напряжения используется резистивный делитель напряжения.

Сигналы напряжения от цепей напряжения и схемы преобразования тока преобразуются в цифровой код для дальнейшей обработки в микропроцессоре. Микропроцессор обеспечивает вычисление счетчиком следующих величин:

- активной энергии и мощности (мгновенные значения);
- реактивной энергии и мощности (мгновенные значения, по квадрантам);
- полной энергии и мощности (мгновенные значения);
- средние на периоде измерений значения мощности (активной, реактивной и полной);
- максимальные на периоде измерений значения мощности (активной, реактивной и полной);
- потребление накопленным итогом;
- приращений активной, реактивной электрической энергии по 8 тарифам согласно программно-задаваемому тарифному расписанию и суммарного значения по всем тарифам
- средняя принимаемая, отдаваемая и общая мощность;
- среднее напряжение;
- максимальное и минимальное значение среднего напряжения на интервале суток;
- величину провалов и бросков напряжения;
- мгновенное значение напряжения;
- мгновенное значение тока;
- среднее значение тока по фазам;
- максимальное и минимальное значение напряжения по фазам на интервале суток;
- мгновенное значение частоты сети;
- мгновенное значение коэффициентов мощности (по фазам);
- последнее среднее значение коэффициента мощности.

Измерения выполняются счётчиками автоматически, просмотр результатов измерений на дисплее возможен как в режиме автоматической прокрутки, так и в ручном режиме. На дисплее также отображаются направление потока энергии, действующий тариф, состояние счетчика и другие параметры.

Результаты измерений отображаются на жидкокристаллическом дисплее и заносятся в регистры счётчика, содержимое которых может быть передано имеющимся информационным интерфейсам внешние во устройства, ДЛЯ которых обеспечена информационная совместимость со счетчиками.

Для поверки и тестирования счетчика используются три светодиодных индикатора, расположенные на лицевой панели. Частота мигания двух индикаторов зависит от приложенной нагрузки и от постоянной счетчика (имп./кВтч и имп./кварч). Постоянная счетчика программируется и доступна для считывания по регистрам 0.3.0 (имп./кВтч) и 0.3.3 (имп./кварч). Частота мигания третьего индикатора зависит от частоты кварцевого генератора счетчика.

Счетчики имеют встроенные часы реального времени с резервированным питанием от автономного источника. Резервирование питания часов при потере напряжения осуществляется с помощью суперконденсатора или литиевой батареи.

Часы обеспечивают выполнение следующих функций:

- формирование периодов измерения мощности и профилей нагрузки;
- ведение внутреннего календаря счетчика, который содержит информацию о годе, месяце, дне, дне недели, часе, минуте, секунде и переходе на следующий год;
- формирование меток времени каждого события, состоящих из даты, часа, минуты и секунды;
 - смену тарифных программ;
 - фиксация времени текущих (расчетных) показаний;
 - регистрация меток времени в журналах событий и профилей нагрузки;
- подсчет интервалов времени отображения информации в режиме автоматической прокрутки показаний на дисплее счетчика, измерение длительности провалов напряжения, измерение времени пропущенных периодов, измерение времени запрета выполнения команды фиксации расчетных показаний, подсчет интервалов времени вычисления мощности и т.п.

Внешний вид счетчиков с указанием мест пломбирования приведен на рисунке 1.

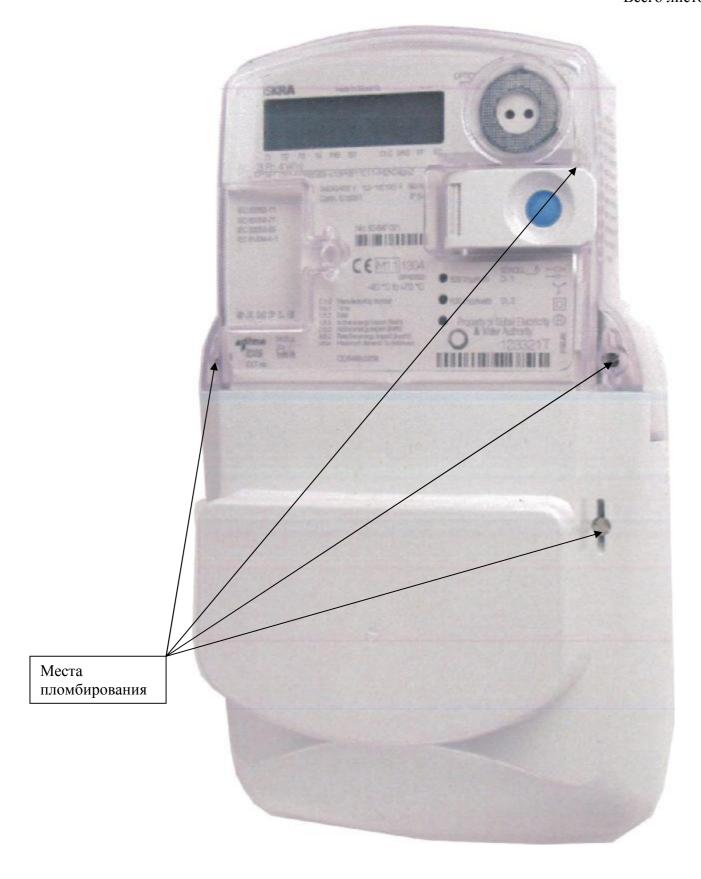


Рисунок 1 — Счетчик электрической энергии МТ38х

Программное обеспечение

В счетчиках используется встроенное программное обеспечение. Программное обеспечение выполняет функции вычисления результатов измерений, формирования выходных сигналов, хранения результатов измерений, взаимодействия с внешними по отношению к счетчикам устройствами, защиты результатов измерений и параметров счетчиков от несанкционированных изменений, ведения шкалы времени.

В счетчиках модификации МТ38х программное обеспечение разделено на метрологически значимую часть (ядро), выполняющую функции взаимодействия с аппаратными ресурсами счетчика и обработки измерительной информации, и метрологически незначимую часть (модуль приложения), выполняющую функции пользовательского интерфейса.

Идентификационные данные метрологически значимой части программного обеспечения счетчиков MT38x приведены в таблице 2.

Таблица 2 – Идентификационные данные метрологически значимой части программного обеспечения

Идентификационное	Номер версии	Цифровой	Алгоритм
наименование программного	(идентификационный	идентификатор	вычисления
обеспечения	номер) программного	программного	цифрового
	обеспечения	обеспечения	идентификатора
		(контрольная сумма)	программного
			обеспечения
MT381V10_ARM_035000418	ISKACMT381100800	B7 86 F6 65 3F 89 0D	MD5
_ALL.hex		20 B8 87 E4 9C 91 5B	
		7C F6	
MT382V10_ARM_035000419	ISKACMT382100800	8A 27 A1 16 2D 7E 9A	MD5
_ALL.hex		1C 33 10 1D C6 F7 46	
		33 B8	
MT383V10_ARM_035000420	ISKACMT383100800	2D 6C EE 3D 4A 7B 49	MD5
_ALL.hex		12 29 43 4D 1F 99 9A	
		2E 5E	

Уровень защиты программного обеспечения по МИ 3286-2010 - «С».

Метрологические и технические характеристики

Пределы основной относительной погрешности при измерении активной электрической энергии в рабочем диапазоне токов и коэффициентов мощности:

- для счетчиков класса точности 1 по ГОСТ 31819.21-2012 ± 1 %;
- для счетчиков класса точности 2 по ГОСТ 31819.21-2012 ± 2 %.

Пределы основной относительной погрешности при измерении реактивной электрической энергии в рабочем диапазоне токов и коэффициентов мощности:

- для счетчиков класса точности 2 по ГОСТ 31819.23-2012 ± 2 %;
- для счетчиков класса точности 3 по ГОСТ 31819.23-2012 \pm 3 %.

Пределы основной относительной погрешности при измерении активной и реактивной электрической энергии в рабочем диапазоне токов и коэффициентов мощности при включении с однофазной нагрузкой по ГОСТ 31819.21-2012, ГОСТ 31819.23-2012.

Пределы дополнительных погрешностей от воздействия влияющих величин в зависимости от класса точности счетчиков приведены в таблице 3.

Базовый ток для исполнений с непосредственным включением	
параметрируется из ряда:	5; 10 A.
Максимальный ток для исполнений с непосредственным	
включением (в зависимости от исполнения),	85; 120A.
Номинальный (максимальный) ток при трансформаторном вклю	очении: 5(6) А.
Стартовый ток	по ГОСТ 31819.21-2012.
Номинальное фазное напряжение U _{ном} :	3x230 B.
Диапазон рабочего напряжения:	от 80 до 115% от $U_{\text{ном}}$.
Номинальная частота:	50 Гц.
Диапазон рабочих частот:	от 45 до 55 Гц.

Таблица 3 – Пределы дополнительных погрешностей при измерении электрической энергии от воздействия влияющих величин

Влияющая величина	Дополнителн	ные	Дополнительные		
	погрешности	при	погрешности при измерении		
	измерении аг	стивной	реактивной энергии		
	энергии (мог	цности) для	(мощности) для счётчиков		
	счётчиков класса точности		класса точности		
	1	2	2	3	
Изменение температуры	По ГОСТ 31819.21-2012		По ГОСТ 31819.23-2012		
окружающего воздуха					
Изменение напряжения в	Пределы до	полнительных	допускаемых погрешностей, %		
пределах ±20%*	±0,5	±0,5	±0,5	±0,5	
Изменение частоты в пределах	10.5	10.5	10.5	10.5	
±10%*	±0,5	±0,5	±0,5	±0,5	
Влияние обратной	10.5	10.5			
последовательности фаз	±0,5	$\pm 0,5$	-	-	
Влияние несимметрии	10.5	10.5			
напряжения	±0,5	±0,5	-	-	
Влияние изменения	±0,05	±0,05	±0,05	±0,05	
вспомогательного напряжения в					
пределах ±15%					
Влияние гармоник в цепях тока и	±0,8	±1	_	-	
напряжения			_		
Влияние нечётных гармоник в	±0,2	±0,2	-	-	
цепи переменного тока					
Влияние субгармоник в цепи	±0,2	±0,2	_	-	
переменного тока			_		
Влияние постоянного тока и	±3	±3		±3	
чётных гармоник в цепи			±3		
переменного тока					
Влияние постоянной магнитной	±0,1	±0,1	±0,1	±0,1	
индукции внешнего					
происхождения					
Влияние магнитной индукции	±2	±3	±3	±3	
внешнего происхождения 0,5 мТл			5	<u>±</u> 5	
Влияние функционирования	±0,1	±0,1	±0,1	±0,1	
вспомогательных частей	-0,1	±0,1	<u>-</u> 0,1	±0,1	
Влияние радиочастотных	±2	±2	<u>+2</u>	±2	
электромагнитных полей		<u></u>			

Влияющая величина	Дополнителн	ьные	Дополнительные		
	погрешности при		погрешности при измерении		
	измерении активной		реактивной энергии		
	энергии (мощности) для		(мощности) для счётчиков		
	счётчиков кл	асса точности	класса точности		
	1	2	2	3	
Влияние кондуктивных помех,					
наводимых радиочастотными	±0,5	±,5	±0,5	±0,5	
ПОЛЯМИ					
Влияние наносекундных	<u>±</u> 4	<u>±</u> 4	±4	±4	
импульсных помех			<u> </u>	<u> </u>	
Влияние колебательных	+2	±2	+2	±2	
затухающих помех	12	12	12	12	

^{* -} в рабочих диапазонах токов и коэффициентов мощности, для прочих влияющих величин при значениях тока и коэффициента мощности, установленных ГОСТ 31819.21-2012, ГОСТ 31819.23-2012.

Ход часов реального времени в зависимости от температуры окружающего воздуха (T, °C), не более $\pm [0.5+0.15(|23-T|)]$ с/сут. Потребляемая мощность для счетчиков МТ38х: Глубина хранения профиля нагрузки с периодом регистрации Класс зашиты II. Требования к электромагнитной совместимости по ГОСТ 31818.11-2012. Средняя наработка на отказ, не менее 1.7×10^6 ч. Рабочие условия применения: – температура окружающего воздуха от минус 40 до плюс 70 °C; – относительная влажность воздуха при температуре 35°C, не более 95 %;

Знак утверждения типа

Знак утверждения типа наносится на щиток счетчиков и эксплуатационную документацию.

Комплектность средства измерений

Комплектность счетчиков электроэнергии МТ38х приведена в таблице 4.

Таблица 4 – Комплектность

Наименование	Количество			
Счетчик электрической энергии МТ38х	1			
Счетчик электрической энергии трехфазный МТ38х. Паспорт.	1			
Счетчики статические трехфазные переменного тока активной	1*			
и реактивной энергии МТ38х. Методика поверки				
Примечание:* - допускается поставка одного документа на партию счетчиков				

Поверка

осуществляется по методике поверки 024-30007-14 «Счетчики статические трехфазные переменного тока активной и реактивной энергии МТ38х. Методика поверки», утвержденной Φ ГУП «СНИИМ» в июне 2014 г.

Основное поверочное оборудование: установка для поверки счетчиков электрической энергии УППУ-МЭ 3.1К (Г.р. №39138-08), укомплектованная прибором электроизмерительным эталонным многофункциональным «Энергомонитор 3.1КМ-Х-02» (Г.р. №52854-13); тайм-сервер ФГУП «ВНИИФТРИ» (поправка системных часов не более ± 10 мкс).

Сведения о методиках (методах) измерений

Методика измерений содержится в эксплуатационном документе «Счетчик электрической энергии трехфазный МТ38х. Паспорт».

Нормативные и технические документы, устанавливающие требования к счетчикам статическим трехфазным переменного тока активной и реактивной энергии MT38x

- 1. ГОСТ 31818.11-2012 (IEC 62052-11:2003) «Аппаратура для измерения электрической энергии переменного тока. Общие требования. Испытания и условия испытаний. Часть 11. Счетчики электрической энергии».
- 2. ГОСТ 31819.21-2012 (IEC 62053-21:2003) «Аппаратура для измерения электрической энергии переменного тока. Частные требования. Часть 21. Статические счетчики активной энергии классов точности 1 и 2».
- 3. ГОСТ 31819.23-2012 (IEC 62053-23:2003) «Аппаратура для измерения электрической энергии переменного тока. Частные требования. Часть 23. Статические счетчики реактивной энергии».
 - 4. Документация фирмы «Iskraemeco», Словения.

Рекомендации по области применения в сфере государственного регулирования обеспечения единства измерений

- при осуществлении торговли

Заявитель

Закрытое акционерное общество «Искра-РЭС».

Адрес: 119361, г. Москва, ул. Озерная, д.42, тел. +7(495)2762320.

Изготовитель

Фирма «Искраемеко» (Iskraemeco d.d.),

Адрес: Словения, 4000 Крань, Савска лока 4, тел. +3(864)2064000.

Испытательный центр

ГЦИ СИ Федеральное государственное унитарное предприятие «Сибирский государственный ордена Трудового Красного Знамени научно-исследовательский институт метрологии» (ГЦИ СИ ФГУП «СНИИМ»).

Адрес: 630004, г. Новосибирск, проспект Димитрова, д. 4, тел. (383)210-08-14, факс (383)2101360. E-mail: director@sniim.ru

Аттестат аккредитации ГЦИ СИ ФГУП «СНИИМ» по проведению испытаний средств измерений в целях утверждения типа № 30007-09 от 12.12.2009 г.

Заместитель				
Руководителя Федерального				
агентства по техническому				
регулированию и метрологии				Ф.В. Булыгин
	Мπ	"	<i>>></i>	2014 г