ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Генераторы газовых смесей моделей Т700, 700E, Т700U, 700EU, Т700H, Т703, 703E, Т703U, 702, Т750 - рабочие эталоны 1-го разряда

Назначение средства измерений

Генераторы газовых смесей моделей Т700, 700E, Т700U, 700EU, Т700H, Т703, 703E, Т703U, 702, Т750 - рабочие эталоны 1-го разряда (далее - генераторы) предназначены для воспроизведения единицы объемной доли (массовой концентрации) определяемых компонентов, приведенных в таблице 2, и ее передачи рабочим средствам измерений в соответствии с ГОСТ 8.578-2008 «ГСИ. Государственная поверочная схема для средств измерений содержания компонентов в газовых средах».

Описание средства измерений

Принцип действия генераторов заключается в смешении потоков исходного газа от различных источников и газа-разбавителя.

Принцип действия генераторов по каналу динамического разбавления заключается в смешении потоков исходного газа и газа-разбавителя, расход которых регулируется и измеряется с помощью регуляторов массового расхода газа. В качестве исходного газа используются стандартные образцы состава - газовые смеси в баллонах под давлением по ТУ 6-16-2956-92. Генераторы обеспечивают приготовление газовых смесей с возможностью одновременного использования от одного до четырех баллонов.

Принцип действия генераторов по термодиффузионному каналу заключается в смешении потоков исходного газа, находящегося в термостате с контролируемой температурой, и газаразбавителя, расход которого регулируется и измеряется с помощью регуляторов массового расхода газа. В качестве исходного газа используются источники микропотоков ИМ газов и паров по ИБЯЛ. 418319.013 ТУ, представляющие собой ампулу с проницаемой стенкой, заполненную жидкостью или сжиженным газом. При заданной температуре вещество диффундирует через стенку ампулы в поток газа-разбавителя с постоянной скоростью, характеризующейся производительностью источника.

Для получения ПГС озона в воздухе в генераторе используется встроенный генератор озона, в котором озон образуется из кислорода воздуха под воздействием УФ-излучения ртутной лампы низкого давления. Содержание озона в газовой смеси на выходе генератора зависит от степени интенсивности излучения ртутной лампы. Интенсивность УФ лампы может регулироваться тремя способами:

- вручную, путем задания напряжения на лампе;
- автоматически с использованием встроенного фотодиода. В этом случае интенсивность лампы устанавливается по сигналу фотодиода в соответствии с таблицей зависимости объемной доли озона от сигнала фотодиода, находящейся в памяти прибора.
- автоматически, с помощью встроенного в генератор фотометра. В этом случае интенсивность лампы генератора озона регулируется по показаниям встроенного фотометра.

Встроенный фотометр измеряет содержание озона на выходе генератора или в смеси, подаваемой от внешнего источника. Через кювету фотометра поочередно пропускается ΓC озона и поверочный нулевой газ (ПНГ). Приемник фотометра последовательно регистрирует интенсивность УФ-излучения, прошедшего через кювету с ΓC (I) и ПНГ (I_0). Концентрация озона в ΓC пропорциональна поглощению УФ-излучения прошедшего через кювету с ΓC (в соответствии с законом Бугера-Ламберта-Бера).

Принцип титрования в газовой фазе (преобразования NO в NO_2) основан на реакции взаимодействия оксида азота (NO) с озоном, поступающим от генератора озона. Содержание NO_2 , в получаемой на выходе генератора ΓC , пропорционально содержанию озона.

В качестве газа-разбавителя используются поверочные нулевые газы (Π H Γ) — азот по Γ OCT 9293-74 или очищенный воздух (по ТУ 6- 21-5-82 или от генератора нулевого воздуха).

Генераторы осуществляют приготовление ПГС с заданным содержанием следующих компонентов: NO, NO₂, N₂O, NH₃, SO₂, H₂S, CO, CO₂, O₂, O₃, C₃H₈, CH₄.

Конструктивно генераторы выполнены в одном блоке, в состав которого входят газовая система и устройство управления.

Модели генераторов приведены в таблице 1:

Таблица 1.

Модели	Каналы
T700, 700E, T700U, 700EU, T700H	канал динамического разбавления термодиффузионный канал (опция), фотометрический канал (опция) канал титрования в газовой фазе (опция)
T703, 703E, T703U	фотометрический канал (опция) канал титрования в газовой фазе (опция)
702	канал динамического разбавления канал титрования в газовой фазе (опция)
T750	канал динамического разбавления фотометрический канал (опция) канал титрования в газовой фазе (опция)

Все модели «Т» генераторов оборудованы сенсорным дисплеем, который предназначен для контроля и управления прибором. Другие модели генераторов имеют электролюминесцентный дисплей для отображения информации и кнопки для управления прибором.

Генераторы могут работать в автоматическом или ручном режимах. В автоматическом режиме задается содержание компонента в ПГС и микропроцессор рассчитывает необходимый расход газов. В ручном режиме требуемые расходы газов вводятся оператором с дисплея, расположенного на передней панели генераторов.

При помощи меню, отображаемого на дисплее генераторов, можно выбрать компонент, задать необходимую концентрацию компонента в ΓC и расход, ввести значение концентрации в исходной ΓC , а также получить фактическое значение концентрации и расхода.

Генераторы имеют следующие выходные сигналы:

- показания цифрового дисплея;
- аналоговые выходы по напряжению (0-0.1, 0-1, 0-5, 0-10) B;
- цифровой выход RS-232 (RS-232 Multidrop, RS-485, COMM-порт опции), Ethernet, USB.

Генераторы серии Т имеют интерфейсы удаленной связи (Ethernet, USB, RS-232, RS-232 Multidrop, RS-485).

Внешний вид генераторов приведен на рисунках 1 - 4.

Рисунок 1 — Внешний вид генераторов моделей T700, T700U, T700H, T703, T703U.

Рисунок 2 — Внешний вид генераторов моделей 700E, 700EU, 703E.

Рисунок 3 — Внешний вид генераторов модели 702 Рисунок 4 — Внешний вид генераторов модели Т750

Программное обеспечение

Генераторы имеют встроенное программное обеспечение, разработанное фирмой-изготовителем.

Программное обеспечение осуществляет функции:

- расчет, задание и поддержание объемной доли компонента на выходе генератора,
- отображение информации на дисплее генератора;
- обеспечение функционирования узлов и элементов генератора;
- передачу информации по интерфейсу связи с ПК;
- контроль целостности программных кодов ПО, настроечных и калибровочных констант:
 - контроль общих неисправностей (связь, конфигурация);
 - контроль внешней связи (Ethernet, USB, RS-232, RS-232 Multidrop, RS-485).

Уровень защиты программного обеспечения от непреднамеренных и преднамеренных изменений соответствует уровню «С» по МИ 3286-2010.

Влияние программного обеспечения генератора учтено при нормировании метрологических характеристик.

Идентификационные данные программного обеспечения приведены в таблице 2. Таблица 2.

	Номер версии	Цифровой	Алгоритм
Идентификационное	(идентифика-	идентификатор	вычисления
наименование	ционный	программного	цифрового
программного	номер)	обеспечения	идентификатора
обеспечения	программного	(контрольная сумма	программного
	обеспечения	исполняемого кода)	обеспечения
FIRMWARE, MODBUS, M700E (M700EU)	D.4	NA	NA
FIRMWARE,			
OPERATING, STD,	1.1.0	NA	NA
MODBUS, T700 (T700U)			
FIRMWARE,			
OPERATING, MODBUS,	1.0.2	NA	NA
T703			
FIRMWARE,			
OPERATING, STB,	1.0.3	NA	NA
MODBUS, T703U			
FIRMWARE,	C0	NA	NA
OPERATING, M703E		11/1	1471
FIRMWARE,			
OPERATING, STD,	1.1.2	NA	NA
MODBUS, T700H			
FIRMWARE,			
OPERATING, MODBUS	1.1.2	NA	NA
3MFC, T750			
M702 CONTROL CHIP,	1.1	NA	NA
W/SOFTWARE	1.1	1111	1111
_	T-0	_	

Примечание – номер версии ПО должен быть не ниже указанного в таблице.

Метрологические и технические характеристики

1. Метрологические характеристики генераторов приведены в таблице 3. Таблица 3.

Измерительный	Компонент	Диапазон	Пределы допускаемой
канал		воспроизведения	относительной
		объемной доли	погрешности*, %
		компонента, млн ⁻¹	
1	2	3	4
Фотометрический (канал озона) O ₃	0	0,003 - 0,02	± 5 (приведенная)
	03	св. 0,02 – 5	± 5
Динамического разбавления	NO, NO ₂	0.02 - 0.5	$\pm (5 + 60 \cdot X_{\Gamma P}/X_{\Gamma C})$
		св. 0,5 – 1000	± 5
	$ m NH_3$	0,15 – 0,5	$\pm (5 + 60 \cdot X_{\Gamma P}/X_{\Gamma C})$
		св. 0,5 – 1000	± 5

Продолжение таблицы 3.

1	2	3	4
	SO_2	0,02 – 0,5	$\pm (5 + 60 \cdot X_{\Gamma P}/X_{\Gamma C})$
		св. 0,5 – 1000	± 5
		0,005 - 0,010	$\pm (5 + 60 \cdot X_{\Gamma P}/2 \times X_{\Gamma C})^{**}$
	H_2S	св. 0,010 – 0,5	$\pm (5 + 60 \cdot X_{\Gamma P}/X_{\Gamma C})$
		св. 0,5 – 1000	± 5
	N ₂ O	1 – 100	$\pm (5 + 60 \cdot X_{\Gamma P}/X_{\Gamma C})$
Динамического разбавления		св. 100 – 1000	± 5
	СО	1 – 100	$\pm (5 + 60 \cdot X_{\Gamma P}/X_{\Gamma C})$
		св. 100 – 1000	± 5
	CH ₄ , C ₃ H ₈	1 – 100	$\pm (5 + 60 \cdot X_{\Gamma P}/X_{\Gamma C})$
		св. 100 – 1000	± 5
	O_2	100 – 1000	± 6
	CO_2	20 – 1000	± 7
Термодиффузионный	NO_2	0,05 – 1,0	± 7
		св. 1,0 – 7,5	± 6
	SO ₂ , H ₂ S	0,02 – 1,0	± 7
		св. 1,0 – 5,0	± 6
	NH ₃	0,15 – 1,0	± 7
		св. 1,0 – 8,0	± 6

 ± 2

Продолжение таблицы 3.

Титрование в газовой фазе NO ₂ 0,05 – 1,00 ± 7

Примечания:

- * 1) Пределы допускаемой относительной погрешности разбавительного канала установлены при следующих условиях:
- при использовании исходных ГС стандартных образцов состава газовых смесей в баллонах под давлением по ТУ 6-16-2956-92:
- NO, NO₂, N₂O, NH₃, SO₂, H₂S в азоте (воздухе) с относительной погрешностью аттестации не более \pm 4 %, объемная доля определяемого компонента в Γ C не должна превышать 2 % (об.);
- CO, CH_4 , C_3H_8 , CO_2 , в азоте (воздухе), O_2 в азоте с относительной погрешностью аттестации не более \pm 3 %, объемная доля определяемого компонента в ΓC не должна превышать 2 % (об.), объемная доля углеводородов в исходной ΓC не должна превышать 50 % НКПР (нижний концентрационный предел распространения пламени), значения которых приведены в ΓOCT Р 52136-2003;
 - при использовании в качестве газа-разбавителя:
- а) очищенного воздуха от генераторов нулевого воздуха моделей 701, 701H, T701, T701H, 751, 751H рабочих эталонов 1-го разряда (фирма «Teledyne Advanced Pollution Instrumentation», США) или эталона сравнения синтетического воздуха по ГОСТ 8.578-2008 для следующих диапазонов:
 - O_3 , NO, NO₂, NH₃, SO₂, H₂S в диапазоне до 1 млн⁻¹;
 - CH_4 , C_3H_8 , CO, N_2O в диапазоне до 10 млн⁻¹;
- б) очищенного воздуха от генераторов чистого воздуха, внесенных в Госреестр СИ РФ, воздуха по ТУ 6-21-5-82, азота газообразного особой частоты по ГОСТ 9293-74 для остальных диапазонов (кроме CO_2 и O_2);
- в) очищенного воздуха, полученного от генератора чистого воздуха, с содержанием CO_2 не более 1 млн⁻¹ или азота газообразного особой чистоты по ГОСТ 9293-74 (для CO_2);
 - г) азота газообразного особой чистоты марки 5.8 по ТУ 2114-007-53373468-2008 (для O_2).
- 2) $X_{\Gamma P}$ и $X_{\Gamma C}$ нормированное содержание компонента в газе-разбавителе и содержание компонента, подлежащее воспроизведению, соответственно, млн⁻¹.
- 3) Пределы допускаемой относительной погрешности термодиффузионного канала установлены при следующих условиях:
- при использовании источников микропотоков ИМ по ИБЯЛ.418319.013 ТУ-2001 с производительностью ≥ 1 мкг/мин;
 - при использовании в качестве газа-разбавителя
- а) очищенного воздуха от генераторов нулевого воздуха моделей 701, 701H, T701, T701H, 751, 751H рабочих эталонов 1-го разряда (фирма «Teledyne Advanced Pollution Instrumentation», США) или эталона сравнения синтетического воздуха по ГОСТ 8.578-2008 для NO_2 , NH_3 , SO_2 , H_2S в диапазоне до 1 млн^{-1} ;
- б) для остальных диапазонов используется газ-разбавитель очищенный воздух, полученный при помощи генератора чистого воздуха, или по ТУ 6-21-5-82, азот газообразный особой чистоты по ГОСТ 9293-74.
- ** При условии введения в рассчитанное значение концентрации поправки, равной 0,00025 ppb.
 - 2 Диапазоны расходов газа-разбавителя, дм³/мин от 0,5 до 5, от 1 до 10, от 2 до 20
- 3 Пределы допускаемой относительной погрешности установления расхода газа-разбавителя, %
- 4 Пределы допускаемой относительной погрешности поддержания расхода газа-разбавителя в течение 2 ч непрерывной работы, % ± 1

5 Канал динамического разбавления.

5.1 Диапазон коэффициентов разбавления

от 5 до 2000

Примечание: Конкретные значения диапазона коэффициента разбавления приведены в паспорте на генератор.

5.2 Пределы допускаемой относительной погрешности коэффициента разбавления, %

 ± 3

5.3 Диапазоны расходов исходной Γ С, см³/мин от 5 до 50, от 10 до 100, от 20 до 200

5.4 Пределы допускаемой относительной погрешности установления

расхода исходной ГС, %

5.5 Пределы допускаемой относительной погрешности поддержания расхода исходной ГС в течение 2 ч непрерывной работы, % ± 1

6 Термодиффузионный канал.

6.1 Диапазон значений температуры в термостате, °С от 30 до 50

6.2 Пределы допускаемой абсолютной погрешности установления температуры в термостате, °С

 $\pm 0,2$

 ± 2

6.3 Пределы допускаемой абсолютной погрешности поддержания температуры в термостате в течение 2 ч непрерывной работы, °С

6.4 Объемный расход на входе печки, см³/мин

 ± 0.1 100

6.5 Габаритные размеры источников микропотоков, мм, не более

Длина проницаемого сосуда: Наружный диаметр проницаемого сосуда: 45 12

7 Диапазон объемной доли озона в ПГС, получаемых с помощью встроенного генератора озона, приведен в таблице 4.

Таблица 4.

Модель	Диапазон объемной доли озона в ПГС, получаемых с помощью встроенного генератора озона при расходе газа на выходе генератора 1 дм ³ /мин		
	минимальное значение, X_{min} , млн $^{-1}$	максимальное значение, X_{max} , млн $^{-1}$	
T700, 700E, T750	0,1	6	
T700U, 700EU	0,02	6	
Т700Н	10	400	
T703, 703E, T703U	0,1	5	
702	0,05	4	

Примечание:

1 В таблице приведен диапазон значения объемной доли озона при объемном расходе газа на выходе генератора 1 дм^3 /мин. Минимальное и максимальное значения объемной доли озона X^Q_{min} $(млн^{-1})$ и X_{max}^{Q} $(млн^{-1})$ для других расходов Q $(дм^3/мин)$ рассчитывают по формуле:

$$X_{min}^Q = X_{min}/Q, X_{max}^Q = X_{max}/Q$$

2 При применении генератора озона в комплекте с фотометром необходимо учитывать, что объемный расход газовой смеси, потребляемой фотометром составляет 0,8 дм³/мин. Следовательно, расход на выходе генератора должен превышать расход требуемый для калибруемого устройства не менее, чем на 0,9 дм³/мин.

8 Время непрерывной работы, ч, не менее

8

9 Время прогрева генератора, мин, не более:

30

Время прогрева термодиффузионного канала, ч, не менее

10 Габаритные размеры, масса и потребляемая мощность приведены в таблице 5

Таблина 5.

Модель	Габаритные размеры, мм, не более	Масса, кг, не более	Потребляемая мощность, В·A, не более
T700, 700E, T700U, 700EU, T700H, T703, 703E T703U	Длина: 610 Ширина: 435 Высота: 180	18	160
702	Длина: 600 Ширина: 435 Высота: 135	13,5	100
T750	Длина: 560 Ширина: 350 Высота: 250	18	160

11 Питание генераторов осуществляется от сети переменного тока напряжением (230 \pm 23) В с частотой (50 \pm 1) Γ ц.

12 Средняя наработка на отказ, ч

10000

13 Средний срок служб, лет, не менее

8

- 14 Условия эксплуатации:
- температура окружающей воздуха: от 15 до 25 °C;
- относительная влажность: от 45 до 80 %;
- атмосферное давление: от 84 до 106,7 кПа.

Знак утверждения типа

Знак утверждения типа наносится на корпус генератора и на титульный лист Руководства по эксплуатации.

Комплектность средств измерений

В комплект поставки генераторов входят:

1 Генераторы газовых смесей моделей Т700, 700E, Т700U, 700EU, Т700H, Т703U, 703EU, 702, 702H, Т751 - рабочий эталон 1-го разряда 1 шт.

2 Руководство по эксплуатации (с дополнением)

1 экз.

3 Методика поверки МП-242-1677-2013

1 экз.

Поверка

осуществляется по документу МП-242-1677-2013 «Генераторы газовых смесей моделей Т700, 700Е, Т700U, 700ЕU, Т700H, Т703, 703Е, Т703U, 702, Т750 - рабочие эталоны 1-го разряда. Методика поверки», утвержденному ГЦИ СИ ФГУП «ВНИИМ им. Д.И. Менделеева» «20» декабря 2013 г.

Основные средства поверки:

- комплексы, входящие в состав Государственного первичного эталона единиц молярной доли и массовой концентрации компонентов в газовых средах ГЭТ 154 2011;
- эталоны сравнения газовые смеси в баллонах под давлением и источники микропотоков газов и паров с содержанием определяемых компонентов по ГОСТ 8.578-2008.

Сведения о методиках (методах) измерений

Методика измерений приведена в документе «Генераторы газовых смесей моделей Т700, 700E, Т700U, 700EU, Т700H, Т703, 703E, Т703U, 702, Т750 - рабочие эталоны 1-го разряда. Руководство по эксплуатации».

Нормативные и технические документы, устанавливающие требования к генераторам газовых смесей моделей T700, 700E, T700U, 700EU, T700H, T703, 703E, T703U, 702, T750 - рабочим эталонам 1-го разряда

- 1 ГОСТ 8.578-2008 ГСИ. Государственная поверочная схема для средств измерений содержания компонентов в газовых средах;
 - 2 Техническая документация фирмы изготовителя.

Рекомендации по областям применения в сфере государственного регулирования обеспечения единства измерений

оказание услуг по обеспечению единства измерений.

Изготовитель

Фирма «Teledyne Advanced Pollution Instrumentation», США (США, Сан-Диего).

Адрес: 9480 Carroll Park Drive, San Diego, CA 92121-5201.

Заявитель

ООО «ППМ-Системс»

Адрес: 196158, г. Санкт-Петербург, Дунайский пр., д.13, к.1., тел./факс: (812) 448-60-83.

Испытательный центр

ГЦИ СИ ФГУП «ВНИИМ им. Д.И. Менделеева»,

Адрес: 190005, Санкт-Петербург, Московский пр., д.19, тел. (812) 251-76-01,

факс: (812) 713-01-14, электронная почта: info@vniim.ru.

Аттестат аккредитации ГЦИ СИ ФГУП «ВНИИМ им. Д.И. Менделеева» по проведению испытаний средств измерений в целях утверждения типа № 30001-10 от 20.12.2010 г.

Заместитель Руководителя Федерального агентства по техническому регулированию и метрологии

			Ф.В. Булыгин
М.П.	«	»	2014 г.