ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Система автоматизированная информационно-измерительная коммерческого учета электроэнергии (АИИС КУЭ) ОАО «АК «Транснефть» в части ОАО «Приволжскнефтепровод» по ПТК «Железнодорожная нефтеналивная эстакада «Кротовка»

Назначение средства измерений

Система автоматизированная информационно-измерительная коммерческого учета электроэнергии (АИИС КУЭ) ОАО «АК «Транснефть» в части ОАО «Приволжскнефтепровод» по ПТК «Железнодорожная нефтеналивная эстакада «Кротовка» (далее по тексту - АИИС КУЭ) предназначена для измерений активной и реактивной электроэнергии и мощности, сбора, обработки, хранения, формирования отчетных документов и передачи полученной информации.

Описание средства измерений

АИИС КУЭ представляет собой многофункциональную, многоуровневую автоматизированную систему с централизованным управлением и распределённой функцией измерения.

АИИС КУЭ включает в себя следующие уровни:

- 1-й уровень измерительно-информационные комплексы (ИИК), которые включают в себя измерительные трансформаторы тока (далее ТТ) по ГОСТ 7746-2001, трансформаторы напряжения (далее ТН) по ГОСТ 1983-2001 и счетчики активной и реактивной электроэнергии по ГОСТ Р 52323-2005 в режиме измерений активной электроэнергии и по ГОСТ Р 52425-2005 в режиме измерений реактивной электроэнергии, вторичные измерительные цепи и технические средства приема-передачи данных. Метрологические и технические характеристики измерительных компонентов АИИС КУЭ приведены в таблицах 2 4.
- 2-й уровень измерительно-вычислительный комплекс электроустановки (ИВКЭ) АИ-ИС КУЭ, включающий в себя устройство сбора и передачи данных СИКОН С70 (далее УСПД), каналообразующую аппаратуру, устройство синхронизации времени (далее УСВ) УСВ-3.
- 3-й уровень информационно-вычислительный комплекс (ИВК), включающий в себя каналообразующую аппаратуру, сервер баз данных (БД) АИИС КУЭ, сервер опроса, сервер приложений, сервер резервного копирования, автоматизированные рабочие места персонала (АРМ), сервер точного времени ССВ-1Г и программное обеспечение (далее ПО) ПК «Энергосфера».

Измерительные каналы (далее – ИК) состоят из трех уровней АИИС КУЭ.

Первичные фазные токи и напряжения трансформируются измерительными трансформаторами в аналоговые сигналы низкого уровня, которые по проводным линиям связи поступают на соответствующие входы электронного счетчика электрической энергии. В счетчике мгновенные значения аналоговых сигналов преобразуются в цифровой сигнал. По мгновенным значениям силы электрического тока и напряжения в микропроцессоре счетчика вычисляются мгновенные значения активной и полной мощности, которые усредняются за период 0,02 с. Средняя за период реактивная мощность вычисляется по средним за период значениям активной и полной мощности.

Электрическая энергия, как интеграл по времени от средней за период 0,02 с мощности, вычисляется для интервалов времени 30 мин.

Средняя активная (реактивная) электрическая мощность вычисляется как среднее значение мощности на интервале времени усреднения 30 мин.

Цифровой сигнал с выходов счетчиков поступает на входы УСПД, где осуществляется хранение измерительной информации, ее накопление и передача накопленных данных на верхний уровень системы, а также отображение информации по подключенным к УСПД устройствам.

На верхнем – третьем уровне системы выполняется обработка измерительной информации, в частности вычисление электроэнергии и мощности с учетом коэффициентов трансформации ТТ и ТН, формирование и хранение поступающей информации, оформление отчетных документов, отображение информации на мониторах АРМ и передача данных в организации – участники оптового рынка электрической энергии и мощности через каналы связи.

Данные по группам точек поставки в организации-участники ОРЭ и РРЭ, в том числе ОАО «АТС», ОАО «СО ЕЭС» и смежным субъектам, передаются в виде хml-файлов формата 80020 в соответствии с Приложением 11.1.1 к Положению о порядке получения статуса субъекта оптового рынка и ведения реестра субъектов оптового рынка с использованием ЭЦП субъекта рынка. Передача результатов измерений, состояния средств и объектов измерений по группам точек поставки производится с сервера ИВК настоящей системы с учетом полученных данных по точкам измерений, входящим в АИИС КУЭ ОАО "АК "Транснефть" (номер в Госреестре №54083-13).

АИИС КУЭ имеет систему обеспечения единого времени (СОЕВ). СОЕВ предусматривает поддержание единого календарного времени на всех уровнях системы (счетчиков, УСПД и ИВК). Задача синхронизации времени решается использованием службы единого координированного времени UTC. Для его трансляции используется спутниковая система глобального позиционирования ГЛОНАСС/GPS. Синхронизация часов ИВК АИИС КУЭ с единым координированным временем обеспечивается двумя серверами синхронизации времени ССВ-1Г (Госреестр СИ №39485-08), входящими в состав ЦСОД. ССВ-1Г непрерывно обрабатывает данные, поступающие от антенного блока и содержащие точное время UTC спутниковой навигационной системы. Информация о точном времени распространяется устройством в сети ТСР/IP согласно протоколу NTP (Network Time Protocol). ССВ-1Г формирует сетевые пакеты, содержащие оцифрованную метку всемирного координированного времени, полученного по сигналам спутниковой навигационной системы ГЛОНАСС, с учетом задержки на прием пакета и выдачу ответного отклика. Сервер синхронизации времени обеспечивает постоянное и непрерывное обновление данных на сервере ИВК.

Устройство синхронизации времени УСВ-3, входящее в состав ИВКЭ обеспечивает автоматическую коррекцию часов УСПД и счетчиков. УСВ-3 синхронизирует собственное системное время к единому координированному времени по сигналам проверки времени, получаемым от GPS-приемника. Коррекция часов УСПД проводится вне зависимости от величины расхождения часов УСПД и времени приемника. Сличение часов счетчиков с часами УСПД осуществляется с периодичностью 1 раз в 30 минут, коррекция часов счетчиков проводится при расхождении часов счетчика и УСПД более чем на \pm 1 с, но не чаще одного раза в сутки. Погрешность часов компонентов АИИС КУЭ не превышает \pm 5 с.

Журналы событий счетчика электроэнергии и УСПД отражают: время (дата, часы, минуты) коррекции часов указанных устройств и расхождение времени в секундах корректируемого и корректирующего устройств в момент, непосредственно предшествующий корректировке.

Программное обеспечение

В АИИС КУЭ используется программное обеспечение ПК «Энергосфера» версии 7.0, в состав которого входят программы, указанные в таблице 1. ПК «Энергосфера» обеспечивает защиту программного обеспечения и измерительной информации паролями в соответствии с правами доступа. Средством защиты данных при передаче является кодирование данных, обеспечиваемое программными средствами ПК «Энергосфера».

Таблица 1 – Метрологические значимые модули ПО

Наименование программного обеспечения	Идентифика- ционное на- именование программного обеспечения	Номер версии (идентифика- ционный но- мер) программ- ного обеспечения	Цифровой идентифи- катор программного обеспечения (кон- трольная сумма ис- полняемого кода)	Алгоритм вычисления цифрового идентификатора программного обеспечения
ПК «Энергосфера» 7.0	Библиотека pso_metr.dll	1.1.1.1	CBEB6F6CA69318BE D976E08A2BB7814B	MD5

Оценка влияния ПО на метрологические характеристики СИ – метрологические характеристики ИК АИИС КУЭ, указанные в таблицах 3 - 4, нормированы с учетом ПО.

Защита ПО от непреднамеренных и преднамеренных изменений соответствует уровню «С» по МИ 3286-2010.

Метрологические и технические характеристики

Состав измерительных каналов и их метрологические характеристики приведены в таблицах 2-4 Таблица 2 - Состав измерительных каналов АИИС КУЭ

~		-					
Номер ИК	Наименование объекта	TT	ТН	Счётчик	УСПД	Сервер	Вид электро- энергии
1	2	3	4	5	6	7	8
1	ПТК «Железнодорожная нефтеналивная эстакада «Кротовка», ЗРУ-6 кВ, Ввод 1, яч. 1	ТОЛ-СЭЩ-10 Кл. т. 0,5S 600/5 Зав. № 06213-12 Зав. № 06337-12 Зав. № 06412-12	НОЛ-СЭЩ-6 Кл. т. 0,5 6000/100 Зав. № 00565-12 Зав. № 00566-12 Зав. № 00603-12	СЭТ-4ТМ.03М.01 Кл. т. 0,5S/1,0 Зав. № 0812114323			активная реактивная
2	ПТК «Железнодорожная нефтеналивная эстакада «Кротовка», ЗРУ-6 кВ, Ввод 2, яч. 2	ТОЛ-СЭЩ-10 Кл. т. 0,5S 600/5 Зав. № 06080-12 Зав. № 43412-11 Зав. № 06045-12	НОЛ-СЭЩ-6 Кл. т. 0,5 6000/100 Зав. № 00434-12 Зав. № 00567-12 Зав. № 00568-12	СЭТ-4ТМ.03М.01 Кл. т. 0,5S/1,0 Зав. № 0812113738	СИКОН С70 Зав. № 06607 HP ProLia BL460 Ge		активная реактивная
3	ПТК «Железнодорожная нефтеналивная эстакада «Кротовка», ЩСН-0,4 кВ, ТСН	ТОП-0,66 Кл. т. 0,5 100/5 Зав. № 2012835 Зав. № 2012388 Зав. № 2012331	-	СЭТ-4ТМ.03М.08 Кл. т. 0,2S/0,5 Зав. № 0807135685			активная

Таблица 3 - Метрологические характеристики ИК (активная энергия)

		Метрологические характеристики ИК						
11 1117	Диапазон тока	Основная погрешность,			Погрешность в рабочих			
Номер ИК		(±d), %			условиях, (±d), %			
		cos j =	$\cos j =$	$\cos j =$	$\cos j =$	$\cos j =$	$\cos j =$	
		0,9	0,8	0,5	0,9	0,8	0,5	
1	2	3	4	5	6	7	8	
1, 2	I_{H_1} £ I_1 £ $1,2I_{H_1}$	1,1	1,3	2,2	1,9	2,1	2,7	
	$0,2I_{H_1} \pounds I_1 < I_{H_1}$	1,1	1,3	2,2	1,9	2,1	2,7	
(TT 0,5S; TH 0,5;	$0,05 I_{H_1} \mathcal{E} I_1 < 0,2 I_{H_1}$	1,4	1,7	3,0	2,0	2,3	3,4	
Сч 0,5S)	$0,02I_{H_1}$ £ I_1 < $0,05I_{H_1}$	2,5	3,0	5,5	2,9	3,4	5,7	
3	$I_{H_1} \mathcal{E} I_1 \mathcal{E} 1, 2I_{H_1}$	0,8	1,0	1,8	1,0	1,2	1,9	
	$0,2I_{H_1}EI_1 < I_{H_1}$	1,1	1,4	2,6	1,3	1,6	2,7	
(TT 0,5; C4 0,2S)	$0,05 \text{IH}_1 \pounds I_1 < 0,2 \text{IH}_1$	2,2	2,7	5,2	2,3	2,8	5,3	

Таблица 4 - Метрологические характеристики ИК (реактивная энергия)

		Метрологические характеристики ИК						
11 1117	Диапазон тока	Основн	ая погрец	шность,	Погрешность в рабочих			
Номер ИК		(± d), %			условиях, (±d), %			
		$\cos j =$	$\cos j =$	$\cos j =$	$\cos j =$	$\cos j =$	$\cos j =$	
		0,9	0,8	0,5	0,9	0,8	0,5	
1	2	3	4	5	6	7	8	
1, 2	$I_{H_1} \mathcal{E} I_1 \mathcal{E} 1, 2I_{H_1}$	2,7	2,0	1,5	4,3	3,9	3,6	
	$0,2I_{H_1} \pounds I_1 < I_{H_1}$	2,7	2,0	1,5	4,3	3,9	3,6	
(TT 0,5S; TH 0,5;	$0,05 \text{IH}_1 \text{£I}_1 < 0,2 \text{IH}_1$	3,6	2,6	1,7	4,8	4,2	3,7	
Сч 1 (ГОСТ Р 52425-2005))	$0,02I_{\rm H_1}$ £ I_1 < $0,05I_{\rm H_1}$	6,5	4,6	2,9	7,3	5,6	4,3	
3	$I_{H_1} \mathcal{E} I_1 \mathcal{E} 1, 2I_{H_1}$	2,2	1,5	1,0	2,7	2,2	1,9	
	$0,2I_{H_1} \pounds I_1 < I_{H_1}$	3,1	2,2	1,3	3,5	2,7	2,1	
(ТТ 0,5; Сч 0,5)	$0,05 \text{IH}_1 \text{£I}_1 < 0,2 \text{IH}_1$	6,2	4,2	2,4	6,4	4,5	2,9	

Примечания:

- 1. Характеристики погрешности ИК даны для измерений электроэнергии и средней мощности (получасовой).
- 2. В качестве характеристик относительной погрешности указаны границы интервала, соответствующие вероятности 0,95.
 - 3. Нормальные условия эксплуатации:
 - параметры сети:

диапазон напряжения (0,98, 1,02) Ином;

диапазон силы тока (1, 1,2) Іном,

частота (50±0,15) Гц;

коэффициент мощности $\cos i = 0.9$ инд.;

- температура окружающей среды:

TT и TH от минус 40 °C до плюс 50 °C;

счетчиков от плюс 21 °C до плюс 25 °C;

УСПД от плюс 10 °C до плюс 30 °C;

ИВК от плюс 10 °C до плюс 30 °C;

- магнитная индукция внешнего происхождения, не более 0,05 мТл.
- 4. Рабочие условия эксплуатации:
- для ТТ и ТН:
 - параметры сети:

диапазон первичного напряжения $(0.9 \div 1.1) \text{ UH}_1;$

диапазон силы первичного тока - $(0.02 \div 1.2)$ Ін₁;

коэффициент мощности $\cos j \ (\sin j \)\ 0.5 \div 1.0 \ (0.87 \div 0.5);$

частота - (50 ± 0.2) Гц;

- температура окружающего воздуха от минус 40 °C до плюс 60 °C.
- для счетчиков электроэнергии:
 - параметры сети:

диапазон вторичного напряжения $(0.9 \div 1.1) \text{ UH}_2$;

диапазон силы вторичного тока $(0.02 \div 1.2)$ Ін₂;

коэффициент мощности $\cos j (\sin j) - 0.5 \div 1.0 (0.87 \div 0.5);$

частота - (50 ± 0.4) Гц;

- температура окружающего воздуха:
 - для счётчиков электроэнергии от минус 40 °C до плюс 60 °C;
- магнитная индукция внешнего происхождения, не более 0,5 мТл.
- 5. Погрешность в рабочих условиях указана для $\cos \mathbf{j} = 0.8$ инд и температуры окружающего воздуха в месте расположения счетчиков электроэнергии от плюс 5 °C до плюс 35 °C.
- 6. Допускается замена измерительных трансформаторов, счетчиков, УСПД на аналогичные утвержденных типов с метрологическими характеристиками не хуже, чем у перечисленных в Таблице 2. Замена оформляется актом в установленном в ОАО «Приволжскнефтепровод» порядке. Акт хранится совместно с настоящим описанием типа АИИС КУЭ как его неотъемлемая часть.

Параметры надежности применяемых в АИИС КУЭ измерительных компонентов:

- электросчётчик СЭТ-4ТМ.03М.01 (Госреестр №36697-08) среднее время наработки на отказ не менее T = 140 000 ч, среднее время восстановления работоспособности tв = 2 ч;
- электросчётчик СЭТ-4ТМ.03М.08 (Госреестр №36697-12) среднее время наработки на отказ не менее $T=165\,000$ ч, среднее время восстановления работоспособности tв = 2 ч;
- УСПД СИКОН С70 среднее время наработки на отказ не менее $T=70\,000\,$ ч, среднее время восстановления работоспособности $tb=2\,$ ч;
- УСВ-3 среднее время наработки на отказ не менее 45 000 часов, среднее время восстановления работоспособности $t = 2 \, \text{ч}$;
- сервер HP ProLiant BL460 G6, HP ProLiant BL460 Gen8— среднее время наработки на отказ не менее T_{G6} =261163, T_{Gen8} =264599 ч, среднее время восстановления работоспособности t_{B} = 0.5 ч.

Надежность системных решений:

- защита от кратковременных сбоев питания сервера и УСПД с помощью источника бесперебойного питания;
- резервирование каналов связи: информация о результатах измерений может передаваться в организации—участники оптового рынка электроэнергии с помощью электронной почты и сотовой связи.

В журналах событий фиксируются факты:

- журнал счётчика:
 - параметрирования;
 - пропадания напряжения;
 - коррекции времени в счетчике;

- журнал УСПД:
 - параметрирования;
 - пропадания напряжения;
 - коррекции времени в счетчике и УСПД;
 - пропадание и восстановление связи со счетчиком;

Защищённость применяемых компонентов:

- механическая защита от несанкционированного доступа и пломбирование:
 - электросчётчика;
 - промежуточных клеммников вторичных цепей напряжения;
 - испытательной коробки;
 - УСПД;
 - сервера;
- защита на программном уровне информации при хранении, передаче, параметрирова-
 - электросчетчика;
 - УСПД;

нии:

- сервера.

Возможность коррекции времени в:

- электросчетчиках (функция автоматизирована);
- УСПД (функция автоматизирована);
- ИВК (функция автоматизирована).

Возможность сбора информации:

- о результатах измерений (функция автоматизирована);
- о состоянии средств измерений.

Цикличность:

- измерений 30 мин (функция автоматизирована);
- сбора 30 мин (функция автоматизирована).

Глубина хранения информации:

- электросчетчик тридцатиминутный профиль нагрузки в двух направлениях 113 суток; при отключении питания не менее 10 лет;
- УСПД суточные данные о тридцатиминутных приращениях электроэнергии по каждому каналу и электроэнергии, потребленной за месяц, по каждому каналу 45 суток; сохранение информации при отключении питания не менее 10 лет;
- Сервер БД хранение результатов измерений, состояний средств измерений не менее 3,5 лет (функция автоматизирована).

Знак утверждения типа

Знак утверждения типа наносится на титульные листы эксплуатационной документации на систему автоматизированную информационно-измерительную коммерческого учёта электроэнергии (АИИС КУЭ) ОАО «АК «Транснефть» в части ОАО «Приволжскнефтепровод» по ПТК «Железнодорожная нефтеналивная эстакада «Кротовка» типографским способом.

Комплектность средства измерений

В комплект поставки входит техническая документация на систему и на комплектующие средства измерений.

Комплектность АИИС КУЭ представлена в таблице 5.

Таблица 5 - Комплектность АИИС КУЭ

Наименование	Тип	№ Госреестра	Количество, шт.	
1	2	3	4	
Трансформатор тока	ТОЛ-СЭЩ-10	32139-11	6	
Трансформатор тока	ТОП-0,66	47959-11	3	
Трансформатор напряжения	НОЛ-СЭЩ-6	35955-07	6	
Счётчик электрической энергии многофункциональный	СЭТ-4ТМ.03М.08	36697-12	1	
Счётчик электрической энергии многофункциональный	СЭТ-4ТМ.03М.01	36697-08	2	
Устройство сбора и передачи данных	СИКОН С70	28822-05	1	
Устройство синхронизации времени	УСВ-3	51644-12	1	
Сервер точного времени	ССВ-1Г	39485-08	2	
Сервер с программным обеспечением	ПК "Энергосфера"	-	1	
Методика поверки		-	1	
Формуляр	-	-	1	
Руководство по эксплуатации	-	-	1	

Поверка

осуществляется по документу МП 58787-14 «Система автоматизированная информационноизмерительная коммерческого учета электроэнергии (АИИС КУЭ) ОАО «АК «Транснефть» в части ОАО «Приволжскиефтепровод» по ПТК «Железнодорожная нефтеналивная эстакада «Кротовка». Методика поверки», утвержденному ФГУП «ВНИИМС» в августе 2014 г.

Перечень основных средств поверки:

- трансформаторов тока в соответствии с ГОСТ 8.217-2003 «ГСИ. Трансформаторы тока. Методика поверки»;
- трансформаторов напряжения в соответствии с ГОСТ 8.216-2011 «ГСИ. Трансформаторы напряжения. Методика поверки»;
- по МИ 3195-2009 «ГСИ. Мощность нагрузки трансформаторов напряжения без отключения цепей. Методика выполнения измерений»;
- по МИ 3196-2009 «ГСИ. Вторичная нагрузка трансформаторов тока без отключения цепей. Методика выполнения измерений»;
- счетчиков СЭТ-4ТМ.03М по документу ИЛГШ.411152.145 РЭ1 Методика поверки», согласованной с руководителем ГЦИ СИ ФГУ «Нижегородский ЦСМ» 04 декабря 2007 г.;
- счетчиков СЭТ-4ТМ.03М по документу ИЛГШ.411152.145 РЭ1 Методика поверки», утвержденному ФБУ «Нижегородский ЦСМ» в 2012 г.;
- СИКОН С70 по документу «Контроллеры сетевые индустриальные СИКОН С70. Методика поверки ВЛСТ 220.00.00 И1», утвержденному ФГУП «ВНИ-ИМС» в 2005 г.;

- УСВ-3 по документу «Инструкция. Устройство синхронизации времени УСВ-3. Методика поверки ВЛСТ. 240.00.000 МП», утвержденному ГЦИ СИ ФГУП «ВНИИФТРИ» в 2012 г.;
- радиочасы МИР РЧ-01, принимающие сигналы спутниковой навигационной системы Global Positioning System (GPS), номер в Государственном реестре средств измерений № 27008-04;
- переносной компьютер с ПО и оптический преобразователь для работы с счетчиками системы и с ПО для работы с радиочасами МИР РЧ-01;
- термогигрометр CENTER (мод.314): диапазон измерений температуры от -20 до + 60 °C, дискретность 0,1 °C; диапазон измерений относительной влажности от 10 до 100 %, дискретность 0,1 %.

Сведения о методиках (методах) измерений

Метод измерений изложен в документе «Методика измерений количества электрической энергии (мощности) с использованием измерительно-информационного комплекса коммерческого учета электрической энергии ОАО «АК «Транснефть» в части ОАО «Приволжскнефтепровод» по ПТК «Железнодорожная нефтеналивная эстакада «Кротовка» (ИИК КУЭ ОАО «АК «Транснефть» в части ОАО «Приволжскнефтепровод» по ПТК «Железнодорожная нефтеналивная эстакада «Кротовка»)», аттестованной ФГУП «ВНИИМС», аттестат об аккредитации № 01.00225-2011 от 29.06.2011 г.

Нормативные и технические документы, устанавливающие требования к системе автоматизированной информационно-измерительной коммерческого учета электроэнергии (АИИС КУЭ) ОАО «АК «Транснефть» в части ОАО «Приволжскиефтепровод» по ПТК «Железнодорожная нефтеналивная эстакада «Кротовка»

ГОСТ 22261-94. Средства измерений электрических и магнитных величин. Общие технические условия.

ГОСТ 34.601-90. Информационная технология. Комплекс стандартов на автоматизированные системы. Автоматизированные системы. Стадии создания.

ГОСТ Р 8.596-2002. ГСИ. Метрологическое обеспечение измерительных систем. Основные положения.

МИ 3000-2006. Рекомендация. ГСИ. Системы автоматизированные информационно-измерительные коммерческого учета электрической энергии. Типовая методика поверки.

Рекомендации по областям применения в сфере государственного регулирования обеспечения единства измерений

- при осуществлении торговли.

Изготовитель

ООО «Автоматизированные системы в энергетике»

Юридический адрес: 600031, г. Владимир, ул. Юбилейная, д.15

Тел.: 89157694566

E-mail: autosysen@gmail.com

Испытательный центр

Федеральное государственное унитарное предприятие «Всероссийский научно-исследовательский институт метрологической службы» (ФГУП «ВНИИМС»)

Адрес: 119631, г. Москва, ул. Озерная, д.46

Тел/факс: (495)437-55-77 / 437 56 66 E-mail: <u>office@vniims.ru</u>, <u>www.vniims.ru</u>

Аттестат аккредитации ФГУП «ВНИИМС» по проведению испытаний средств измерений

в целях утверждения типа №30004-13 от 26.07.2013

Заместитель Руководителя Федерального агентства по техническому регулированию и метрологии

Ф.В. Булыгин

М.п. «___»_____2014 г.