ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Системы управления виброиспытаниями ВС-301

Назначение средства измерений

Системы управления виброиспытаниями ВС-301 (далее – системы) предназначены для измерений напряжения переменного тока, соответствующего значениям параметров вибрации (виброускорения, виброскорости и виброперемещения), воспроизведения и измерений частоты переменного тока и измерений коэффициента нелинейных искажений.

Описание средства измерений

Конструктивно в базовой комплектации система выполнена в виде приборного блока, подключаемого к сетевому порту внешнего компьютера (не входящего в состав системы) посредством интерфейса Ethernet, и комплекта соединительных кабелей. Приборный блок имеет 4 входных и 2 выходных канала с индивидуальными настройками режимов работы. В расширенной комплектации несколько приборных блоков соединяются посредством интерфейса IU-291 с общим количеством программно поддерживаемых выходных каналов до 16, а входных каналов до 32.

Принцип действия систем основан на усилении выходных электрических сигналов первичных измерительных преобразователей (ПИП), установленных на испытуемых изделиях, преобразовании измерительных сигналов в цифровой код, дальнейшей обработке измерительной информации в компьютере и выдаче ее на внешние устройства в виде, удобном для пользователя, а также формировании и регулировании управляющих сигналов вибростенда таким образом, чтобы измеренные параметры вибрации соответствовали заданному профилю испытаний.

Система способна функционировать как под управлением внешнего компьютера, так и автономно. К внешнему управляющему компьютеру система подключается через стандартную сетевую плату Ethernet. В автономном режиме система выполняет ранее загруженные в её память программы испытаний с отображением режима работы и текущего состояния на встроенном жидкокристаллическом дисплее.

Система может работать со следующими типами ПИП параметров вибрации: с зарядовым выходом, с выходом по постоянному и переменному напряжению, со встроенным усилителем (ICP) и TEDS-датчиками.

Дополнительно каждый приборный блок имеет 16 независимых логических входов и выходов, которые служат для управления работой системы посредством внешних управляющих сигналов или управления с помощью системы иными внешними устройствами.

В максимальной комплектации система способна управлять вибрационными установками с шестью степенями свободы (6DoF), обеспечивающими перемещение по трем осям в сочетании с вращением по каждой оси.

Системы используются совместно с испытательными вибрационными установками для управления испытаниями в различных режимах:

- синусоидальная вибрация с постоянной частотой или разверткой частоты (SINE);
- поиск и удержание резонанса (RSTD);
- случайная широкополосная вибрация ШСВ (RANDOM);
- классический удар (SHOCK);
- режим имитации стрелково-пушечного воздействия;
- режим синтеза спектра ударного отклика (SRS);
- наложение синусоидальных вибраций на ШСВ (SoR);
- наложение ШСВ на ШСВ (RoR);
- наложение синуса и ШСВ на ШСВ (SRoR);

- наложение синус на синус (SoS);
- переходной процесс (ТТН);
- запись и воспроизведение полевых испытаний и т.д.

В системе также реализованы функции измерений частоты периодических сигналов и коэффициента нелинейных искажений входного сигнала, а также синтеза синусоидального сигнала с регулируемым коэффициентом нелинейных искажений.

Дополнительно в системе программно реализованы автоматизированные процедуры аттестации виброиспытательного оборудования, анализа испытаний, проводимых на ударных стендах, и переходных процессов, а также автоматизированная поверка (калибровка) самой системы.

По условиям эксплуатации системы удовлетворяют требованиям группы 1.1 климатического исполнения УХЛ по ГОСТ РВ 20.39.304-98 с диапазоном рабочих температур от 10 до 30 °С и относительной влажностью окружающего воздуха до 80 % при температуре 25 °С, без предъявления требований по механическим воздействиям и воздействию атмосферных осадков, пыли, песка.

Внешний вид передней панели приборного блока и место для нанесения знака утверждения типа приведены на рисунке 1. Внешний вид задней панели приборного блока и места для пломбировки приведены на рисунке 2. Пломбировка предусмотрена на болтах крепления верхней панели к корпусу приборного блока.

Рисунок 2

Программное обеспечение

Метрологически значимая часть программного обеспечения (ПО) представляет собой ПО VisProbe SL, работающее под управлением операционных систем семейства Windows в составе внешнего персонального компьютера, и встроенное ПО Vib03.

ПО VisProbe SL обеспечивает формирование заданий на проведение испытаний, управление работой системы в процессе испытания, отображение хода испытаний в удобном для пользователя виде, защиту настроек оборудования от несанкционированного доступа, анализ данных и протоколирование результатов.

 $\Pi O\ Vib 03$ – это внутреннее $\Pi O\$ приборного блока, обеспечивающее работу системы в автономном режиме и осуществляющее управление вибростендом в соответствии с заданием

пользователя, контроль хода выполнения испытания и целостности обратной связи, а также отображение данных о ходе испытания на встроенном дисплее системы.

Идентификационные данные (признаки) метрологически значимой части ПО указаны в таблице 1.

Таблица 1

Идентификационные данные (признаки)	Значение	Значение
идентификационное наименование ПО	VisProbe_SL.exe	Vib03.exe
номер версии (идентификационный номер) ПО	1.00	1.00
цифровой идентификатор ПО	43F58617	A1798637
алгоритм вычисления идентификатора ПО	CRC32	CRC32

Метрологически значимая часть ПО и измеренные данные достаточно защищены с помощью специальных средств защиты от преднамеренных и непреднамеренных изменений. Реализована защита ПО с помощью ключа лицензии, встроенного в приборный блок, и пароля доступа к ПО. Защита ПО от непреднамеренных и преднамеренных изменений соответствует уровню «высокий» по Р 50.2.077 – 2014.

Метрологические и технические характеристики
Диапазон рабочих частот, Гц
Число входных каналов
Число выходных каналов
Диапазон измерений напряжения переменного тока (амплитудных значений), $B \dots \pm 10$.
Пределы допускаемой относительной погрешности воспроизведения
$\pm 5 \cdot 10^{-5}$.
Пределы допускаемой относительной погрешности измерений частоты $\pm 5\cdot 10^{-5}$.
Диапазон измерений коэффициента нелинейных искажений в диапазоне частот первой
гармоники от 20 до 5000 Гц, %
Пределы допускаемой абсолютной погрешности измерений коэффициента нелинейных
искажений K_r , %
Пределы допускаемой относительной погрешности измерений синусоидального
напряжения, соответствующего значениям виброускорения, виброскорости и
виброперемещения, на частоте 1 к Γ ц, %
Неравномерность AЧX выходных каналов относительно опорной частоты 1 кГц,
дБ, не более:
в диапазоне частот от 0,1 до 3 Гц (включительно)
в диапазоне частот от 3 до 35000 Гц
Динамический диапазон автоматического регулирования в режиме синусоидальной
вибрации, дБ, не менее
Динамический диапазон автоматического регулирования в режиме широкополосной
случайной вибрации, дБ, не менее
Формы импульса удараполусинус, пилообразный, треугольный, трапецеидальный.
Габаритные размеры приборного блока (длина ширина высота), мм,
не более
Масса приборного блока, кг, не более
Потребляемая мощность, B·A, не более
Параметры электропитания:
напряжение переменного тока, В
частота переменного тока, Гц
Рабочие условия эксплуатации:
температура окружающего воздуха, °С
относительная влажность окружающего воздуха (при температуре 25 °C), %, не более80;
атмосферное давление, к Π а

Знак утверждения типа

наносится на лицевую панель приборного блока методом шелкографии и на титульный лист эксплуатационной документации типографским методом.

Комплектность средства измерений

Комплект поставки включает:

- приборный блок 1 шт.;
- комплект кабелей 1 к-т;
- специальное ПО 1 CD;
- эксплуатационная документация 1 к-т;
- методика поверки 1 шт.

Поверка

осуществляется по документу ВАПМ.466961.002МП «Инструкция. Системы управления виброиспытаниями ВС-301. Методика поверки», утвержденному руководителем ГЦИ СИ ФБУ «ГНМЦ Минобороны России» 19 сентября 2014 г.

Основные средства поверки:

- калибратор-вольтметр универсальный B1-28 (рег. № 10759-86): диапазон воспроизведения напряжения переменного тока от 1 мкВ до 700 В в диапазоне рабочих частот от 0,1 Γ ц до 120 к Γ ц, пределы допускаемой относительной погрешности воспроизведения напряжения переменного тока в диапазоне частот от 0,1 Γ ц до 100 к Γ ц и в диапазоне напряжений от 10^{-4} до 20 В \pm 0,08 %, диапазон измерений напряжения переменного тока от 1×10^{-5} до 700 В, пределы допускаемой относительной погрешности измерений напряжения переменного тока в диапазоне частот от 40 Γ ц до 50 к Γ ц и в диапазоне напряжений от 10^{-4} до 20 В \pm 0,12 %;
- частотомер электронно-счетный Ч3-77 (рег. № 14739-95): диапазон измерений частоты от 0,01 Γ ц до 1,6 Γ Γ ц, пределы допускаемой относительной погрешности измерений частоты $\pm 1\cdot10^{-8}/T_{\text{сч}}$, где $T_{\text{сч}}$ время счета;
- калибратор-измеритель нелинейных искажений СК6-20 (рег. № 41370-09): диапазон частот первой гармоники от 10 Γ ц до 200 к Γ ц, диапазон измерений коэффициента гармоник от 0,001 до 100 %, диапазон амплитуды при измерении коэффициента гармоник от 1 до 1,8 B, пределы допускаемой абсолютной погрешности измерений коэффициента гармоник (K_{Γ}) в диапазоне от 10 Γ ц до 20 к Γ ц \pm (0,03· K_{Γ} +0,006) %.

Сведения о методиках (методах) измерений

ВАПМ.466961.002 РЭ. Системы управления виброиспытаниями ВС-301. Руководство по эксплуатации.

Нормативные документы, устанавливающие требования к системам управления виброиспытаниями BC-301

- 1. ΓΟCT PB 20.39.304-98.
- 2. ГОСТ 30296-95. Аппаратура общего назначения для определения основных параметров вибрационных процессов. Общие технические требования.
- 3. ГОСТ Р 8.648-2008. ГСИ. Государственная поверочная схема для средств измерений переменного электрического напряжения до $1000 \, \mathrm{B}$ в диапазоне частот от 10^{-2} до $10^9 \, \mathrm{\Gamma}$ ц.
- 4. ГОСТ 8.762-2011. ГСИ. Государственная поверочная схема для средств измерений коэффициента гармоник.
- 5. ВАПМ.466961.001 ТУ. Системы управления виброиспытаниями ВС-301. Технические условия.

Рекомендации по областям применения в сфере государственного регулирования обеспечения единства измерений

Выполнение работ по оценке соответствия промышленной продукции и продукции других видов а также иных объектов установленным законодательством Российской Федерации обязательным требованиям, осуществление деятельности в области обороны и безопасности государства.

Изготовитель

Общество с ограниченной ответственностью «Висом» (ООО «Висом»), г. Смоленск.

Юридический (почтовый) адрес: 214013, г. Смоленск, ул. Воробьева, 13.

Телефон/факс: (4812) 61-80-76.

http://visom.ru/

E-mail:contact@visom.ru

Испытательный центр

Государственный центр испытаний средств измерений Федеральное бюджетное учреждение «Главный научный метрологический центр Министерства обороны Российской Федерации» (ГЦИ СИ ФБУ «ГНМЦ Минобороны России»).

Юридический (почтовый) адрес: 141006, г. Мытищи, Московская область, ул. Комарова, д. 13.

Телефон: (495) 583-99-23, факс: (495) 583-99-48.

Аттестат аккредитации ГЦИ СИ ФБУ «ГНМЦ Минобороны России» по проведению испытаний средств измерений в целях утверждения типа № 30018-10 от 05.08.2011 г.

Заместитель Руководителя				
Федерального агентства по техническому				
регулированию и метрологии				Ф.В. Булыгин
	М.п.	<u> </u>	»	2014 г.