ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Датчики силоизмерительные тензорезисторные ТВ

Назначение средства измерений

Датчики силоизмерительные тензорезисторные ТВ (далее - датчики) предназначены для измерений и преобразования, воздействующих на датчик сил растяжения и сжатия, в аналоговый нормированный электрический измерительный сигнал.

Описание средства измерений

Принцип действия датчиков основан на изменении электрического сопротивления тензорезисторов, соединенных в мостовую схему, при их деформации, возникающей в местах наклейки тензорезисторов к упругому элементу датчика, под действием прилагаемой нагрузки растяжения или сжатия. Изменение электрического сопротивления вызывает разбаланс мостовой схемы и появление в диагонали моста электрического сигнала, изменяющегося пропорционально нагрузке.

Датчики состоят из упругого элемента, защитного корпуса, коммутационной коробки, кабеля питания и измерения, тензорезисторов на клеевой основе, соединенных по полной мостовой электрической схеме, и элементов герметизации. Места наклейки тензорезисторов и расположения элементов термокомпенсации и нормирования в датчиках находятся во внутренней полости упругого элемента и защищены крышками и герметиком.

Упругий элемент датчиков с наибольшим пределом измерений 10, 30 и 50 кН представляет собой кольцо с диаметрально расположенными местами приложения нагрузки в виде шпилек с одной стороны и резьбовых втулок с другой. Упругий элемент датчиков с наибольшим пределом измерений 100, 150, 250, 500, 1000, 1500, 2000 и 3000 кН представляет собой полый стержень, имеющий на концах внутреннюю и наружную резьбу для присоединения.

На корпусе каждого датчика расположены два разъема для подключения кабелей, использующихся для измерения сигнала независимых каналов N 1 и 2.

Модификации датчиков отличаются метрологическими характеристиками, формой упругого элемента и имеют обозначение ТВ–Н, где:

ТВ – обозначение типа;

Н – наибольший предел измерений в кН деленный на 10.

Внешний вид датчиков показан на рисунке 1, 2.

Рисунок 1 – Внешний вид датчиков ТВ-1, ТВ-3 и ТВ-5

Рисунок 2 – Внешний вид датчиков ТВ-10, ТВ-15, ТВ-25, ТВ-50, ТВ-100, ТВ-150, ТВ-200 и ТВ-300

Маркировка датчиков производится на фирменной наклейке, на которой нанесены:

- торговая марка изготовителя;
- модификация датчика;
- значение наибольшего предела измерения;
- серийный номер;
- знак утверждения типа.

Метрологические и технические характеристики

Наибольший предел измерения, масса и габаритные размеры упругого элемента датчиков приведены в таблице 1.

Таблица 1

	Наибольший	Масса упругих	Габаритные размеры упругих элементов дат-				
Модифи-	предел изме-	элементов дат-	чиков, мм, не более				
кация	рений (НПИ),	чиков, кг, не	ппипо	ширица	рицеота	шиаматр	
	кН	более	длина	ширина	высота	диаметр	
TB-1	10	1,0	90	70	150		
TB-3	30	1,5	100	80	160		
TB-5	50	2,0	100	90	160		
TB-10	100	2,0			190	60 (120) ¹	
TB-15	150	2,5			205	65 (125) ¹	
TB-25	250	2,5			220	$70(130)^1$	
TB-50	500	4,5			240	90 (150) ¹	
TB-100	1000	8,5			300	$110 (170)^1$	
TB-150	1500	14,5			320	$125 (185)^1$	
TB-200	2000	18,0			350	135 (195) ¹	
$TB-300^2$	3000	26,0			400	160 (220) ¹	

Примечание: ¹ В скобках указан габаритный размер датчика со встроенной коммутационной коробкой;

 $^{^2}$ Для датчика ТВ-300 метрологические характеристики в режиме растяжения нормированы только до 2000 кН.

	Наименьший предел измерения, не более					
	Пределы допускаемой относительной погрешности ³ , %					\pm 1,0
	Относительный выходной сигнал при наибольшем пределе измерений, мВ/В					2
	Входное сопротивление датчика, Ом					
	Выходное сопротивление датчика, Ом70					$700 \pm 0,7$
	Область	нормальных	значений	температуры	окружающего	воздуха,
°C	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •			от минус 10 д	о плюс 40
	Диапазон то	емператур работ	оспособности	и хранения, °С	от минус 30 д	цо плюс 60
	Напряжени	е питания датчи	ka, B		•••••	12
			*			

Примечание: 3 Метрологические характеристики приведены для области нормальных значений температуры окружающего воздуха от минус $10\,^{\circ}$ С до плюс $40\,^{\circ}$ С.

Знак утверждения типа

Знак утверждения типа наносится типографским способом на титульный лист паспорта и термосублимационным способом на фирменную наклейку.

Комплектность средства измерений

№	Наименование	Количество	
1	Датчик	1 шт.	
2	Кабель питания и связи с разъемом	2 шт.	
3	Паспорт	1 экз.	
4	Методика поверки МП 2301-268-2014	1 экз.	

Поверка

осуществляется по методике МП 2301-268-2014 «Датчики силоизмерительные тензорезисторные ТВ. Методика поверки», утвержденной ГЦИ СИ ФГУП «ВНИИМ им. Д.И. Менделеева» $16.07.2014~\Gamma$.

Основные средства поверки: рабочие эталоны 3-го разряда по ГОСТ Р 8.663-2009 с пределами допускаемых значений доверительных границ относительной погрешности $\delta = 0.5$ %.

Сведения о методиках (методах) измерений

изложены в разделе 6 паспорта "Подготовка к работе и порядок работы".

Нормативные и технические документы, устанавливающие требования к датчикам силоизмерительным тензорезисторным ТВ

- 1. ГОСТ Р 8.663-2009 «ГСИ. Государственная поверочная схема для средств измерений силы».
- 2. ТУ 4273-001-07553682-2014 «Датчики силоизмерительные тензорезистороные ТВ. Технические условия».

Рекомендации по областям применения в сфере государственного регулирования обеспечения единства измерений

выполнение работ по оценке соответствия продукции и иных объектов обязательным требованиям в соответствии с законодательством Российской Федерации о техническом регулировании.

Изготовитель

Федеральное государственное унитарное предприятие "Центральный научноисследовательский институт машиностроения" (ФГУП ЦНИИмаш)

Адрес: Россия, 141070, Московская обл., г. Королев, ул. Пионерская, 4.

Тел.: +7 (495) 513-59-51. Факс: +7 (495) 512-21-00. E-mail: corp@tsniimash.ru Http: www.tsniimash.ru

Заявитель

Общество с ограниченной ответственностью «Торговый дом «Тензо-М» (ООО «ТД «Тензо-М»), п. Красково Московской обл.

Адрес: Россия, 140050, Московская область, Люберецкий р-н, п. Красково, ул. Вокзальная, 38.

Тел/факс +7 (495) 745-3030.

E-mail: <u>tenso@tenso-m.ru</u> Http: <u>www.tenso-m.ru</u>

Испытательный центр

ГЦИ СИ ФГУП «ВНИИМ им. Д.И. Менделеева».

Адрес: 190005, Санкт-Петербург, Московский пр., 19

Тел. (812) 251-76-01, факс (812) 713-01-14, e-mail: <u>info@vniim.ru</u>, <u>http://www.vniim.ru</u> Аттестат аккредитации ГЦИ СИ ФГУП «ВНИИМ им. Д.И. Менделеева» по проведению испытаний средств измерений в целях утверждения типа № 30001-10 от 20.12.2010 г.

Заместитель Руководителя Федерального агентства по техническому регулированию и метрологии

Ф.В. Булыгин

М.п. « » 2014 г.