ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Сканеры лазерные серии LaCam[®], модификаций LaCam[®]-M, LaCam[®]-LI / CI, LaCam[®]-Torpedo, LaCam[®]-Forge

Назначение средства измерений

Сканеры лазерные серии LaCam[®] предназначены для измерения геометрических параметров рабочего слоя футеровки внутренней полости конвертера или литейного ковша различной формы и измерения теплового состояния этого слоя.

Описание средства измерений

Принцип действия сканеров основан на бесконтактном эхоимпульсном методе измерения расстояний в определенной системе координат футеровки внутри металлургических сосудов типа конвертера или литейного ковша различной формы и измерении температуры внутри этих сосудов с помощью инфракрасного пирометра. Для измерения наклона контролируемого конвертера используется емкостный инклинометр, устанавливаемый непосредственно на конвертере.

Конструктивно сканеры изготавливаются в мобильном или стационарном варианте. Мобильный сканер модификации LaCam®-М состоит из передвижного устройства, инклинометра и персонального компьютера с программным обеспечением. Передвижное устройство содержит металлический корпус в теплозащитном исполнении, установленный на трех- или четырехколесном основании, источник питания, лазерную измерительную систему и пирометр LaCam®-Pyro. Стационарные установки выпускаются в нескольких модификациях: LaCam®-LI / СI для измерения внутренней футеровки металлургических сосудов, сталелитейных ковшов и конверторов, LaCam®-Torpedo для измерения внутренней футеровки металлургических ковшов торпедной формы, LaCam®-Forge для ковки в открытом штампе в кузнечном производстве.

Управление работой лазерной измерительной системы, инклинометром и пирометром, обработка и выдача измерительной информации осуществляется с помощью персонального компьютера (ПК).

Рисунок 1 – Сканер лазерный LaCam®-М

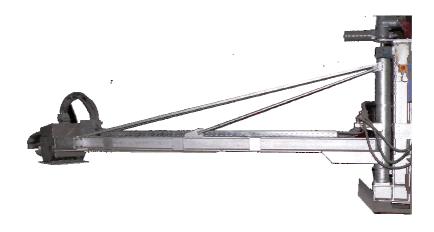


Рисунок 2 - Сканер лазерный LaCam $^{\text{\tiny 8}}$ -LI / CI

Рисунок 3 - Сканер лазерный LaCam®-Torpedo

Рисунок 4 - Сканер лазерный LaCam®-Forge

Рисунок 5 - Инклинометр

Программное обеспечение

Программное обеспечение установлено на ПК и предназначено для обработки сигналов от лазерного сканирующего устройства, инклинометра и пирометра. При этом работающий в импульсном режиме лазерный луч выполняет измерения внутренней области измеряемого объекта в несколько этапов и полностью автоматически. После измерения большого количества точек программное обеспечение создает трехмерную карту измеренной внутренней области. Программное обеспечение сравнивает полученные при этом данные с результатами предыдущих измерений и отображает остаточную толщину футеровки, а также сохраняет результаты измерения и выводит на печать отчет измерений.

Разделение на метрологически значимую и незначимую части произведено на «низком» уровне. Метрологически значимая часть выделена в виде исполняемого файла «LaCam 3D»

Идентификационные данные программного обеспечения (ПО)

Наименование	Идентификацион-	Номер версии	Цифровой иденти-	Алгоритм вы-
программного	ное наименование	(идентификаци-	фикатор программ-	числения циф-
обеспечения	программного	онный номер)	ного обеспечения	рового иден-
	обеспечения	программного	(контрольная сумма	тификатора
		обеспечения	исполняемого кода)	программного
				обеспечения
Программное	LaCam3D.exe	Версия	4e5c90e3e99f317ea	
обеспечение		11.04.2014	dd5cca3d2c295b8	MD5
«LaCam 3D»				

Уровень защиты ΠO от непреднамеренных и преднамеренных изменений в соответствии с M M 3286-2010 – «А».

Метрологические и технические характеристики

Наименование параметра	Номинальное значение параметра				
1	2	3	4	5	
Модификация лазерного ска-	LaCam®-M	LaCam®-LI /	LaCam®-	LaCam®-	
нера серии LaCam®		CI	Torpedo	Forge	
Диапазон измерения расстоя-					
ния до контролируемой поверх-	2 ÷ 10				
ности, м					
Пределы допускаемой абсо-					
лютной погрешности измерений	± 5				
расстояния, мм					
Диапазон измерения темпера-					
туры, °С	800 ÷ 1700				
Пределы допускаемой относи-					
тельной погрешности измере-	± 2				
ний температуры, %					
Диапазон вертикального ска-					
нирования (фиксированный),	$0 \div 80$				
градус					
Диапазон горизонтального					
сканирования (настраиваемый),	0 ÷ 345				
градус					
Диапазон измерения инкли-					
нометра, градус		0 ÷ 360	<u> </u>		

1	2	3	4	5	
Пределы допускаемой абсо-		1	1	1	
лютной погрешности измерений		$\pm 0,\!25$			
наклона инклинометром, градус					
Габаритные размеры, не бо-	800′ 2250′ 1330 в	400x400x746	400x400x746	400x400x746	
лее, мм:	трехколесном				
	исполнении;				
	900′ 2250′ 1430				
	в четырехколес-				
	ном исполнении				
Масса, не более, кг	310	99	99	99	
	в трехколесном				
	исполнении со				
	встроенными ак-				
	кумуляторными				
	батареями;				
	360				
	в четырехколес-				
	ном исполнении				
	со встроенными				
	аккумуляторными				
	батареями				
Напряжение питания:					
- от сети переменного тока, В	220±22				
- от аккумуляторных батарей, В	24				
Частота питающей сети, Гц	50±1				
Климатические условия приме-					
нения: температура воздуха при	$O_T + 5$ до $+ 50$				
эксплуатации, °С					
Влажность воздуха		80 % при 2	20 °C		

Знак утверждения типа

Знак утверждения типа наносится на маркировочную табличку фотохимическим методом и типографским способом на титульный лист руководства по эксплуатации.

Комплектность средства измерений

В комплект поставки LaCam®-М входят:

Передвижное устройство в теплозащитном	
исполнении с подвижными колесами	1 шт.
Аккумуляторная батарея	1 шт.
Источник питания	1 шт.
Комплект соединительных кабелей	1 к-т
Измерительная система с лазерной головкой	1 шт.
сканирования	
Промышленный персональный компьютер	
с программным обеспечением	1 шт.
Инклинометр	1 шт.
Пирометр LaCam • Руго	1 шт.
Руководство по эксплуатации	1 шт.
Методика поверки	1 шт.

В комплект поставки стационарных установок LaCam®-LI / CI, LaCam®-Torpedo, LaCam®-Forge входят:

Выносная лазерная головка сканирования со встроенным угломером	
(канал инфракрасного приема)	1 шт.
Корпус для лазерной головки сканирования в теплозащитном	
исполнении	1 шт.
Источник питания	1 шт.
Комплект соединительных кабелей для горячих условий	1 к-т
Промышленный персональный компьютер для управления лазер-	
ной системой и обработки результатов измерений с программным	
обеспечением	1 шт.
Пирометр LaCam - Pyro	1 шт.
Руководство по эксплуатации	1 шт.
Методика поверки	1 шт.

Поверка

осуществляется по методике поверки МП РТ 2059-2014 «Сканеры лазерные серии LaCam $^{\$}$, модификаций LaCam $^{\$}$ -M, LaCam $^{\$}$ -LI / CI, LaCam $^{\$}$ -Torpedo, LaCam $^{\$}$ -Forge. Методика поверки», утвержденной ФБУ «Ростест-Москва» 30.04.2014 г.

Основными средствами поверки являются:

- мера длины штриховая типа IV 3-го разряда по ГОСТ Р 8.763-2011,
- источник излучения в виде модели черного тела M390 2-го разряда по ГОСТ 8.558-2009.
- оптическая делительная головка 3-го разряда по ГОСТ 8.016-81.

Сведения о методиках (методах) измерений

Методика измерений приведена в руководстве по эксплуатации.

Нормативные и технические документы, устанавливающие требования к сканерам лазерным LaCam®

- 1 Техническая документация фирмы MINTEQ International GmbH FERROTRON DIVISION.
- $2 \Gamma OCT P 8.763-2011 \Gamma$ осударственная поверочная схема для средств измерений длины в диапазоне $1 \times 10^{-9} \dots 50$ м и длин волн в диапазоне $0,2 \dots 50$ мкм.
- 3 ГОСТ 8.558-2009 Государственная система обеспечения единства измерений. Государственная поверочная схема для средств измерений температуры.
- 4 ГОСТ 8.016–81 Государственная система обеспечения единства измерений. Государственный первичный эталон и государственная поверочная схема для средств измерений плоского угла.

Рекомендации по областям применения в сфере государственного регулирования обеспечения единства измерений

при выполнении работ по оценке соответствия промышленной продукции и продукции других видов, а также иных объектов установленным законодательством Российской Федерации обязательным требованиям

Изготовитель

MINTEQ International GmbH FERROTRON DIVISION, Германия

Dr.-Alfred-Herrhausen-Allee 24, DE-47228 Duisburg,

Phone: +49 2065 42 36 500, Fax: +49 2065 42 36 501, E-mail: ferrotron@minteq.com

Заявитель

SGS Germany GmbH, Германия Roedingsmarkt 16, B-20459 Hamburg,

Phone: +49 40 30101-506, Fax: +49 40 30101-946

Испытательный центр

Государственный центр испытаний средств измерений (ГЦИ СИ) Федеральное бюджетное учреждение «Государственный региональный центр стандартизации, метрологии и испытаний в г. Москве» (ФБУ «Ростест – Москва»)

117418, Россия, г. Москва, Нахимовский проспект д.31

Тел.: +7 (495) 544 00 00, +7 (499) 129 19 11, Факс: +7 (499) 124 99 96

E-mail: info@rostest.ru

Аттестат аккредитации ГЦИ СИ ФБУ «Ростест-Москва» по проведению испытаний средств измерений в целях утверждения типа № 30010-10 от 15.03.2010 г.

Заместитель Руководителя Федерального агентства по техническому регулированию и метрологии

Ф.В. Булыгин

М.п. «__»____2014 г.