ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Система автоматизированная информационно-измерительная коммерческого учета электроэнергии (АИИС КУЭ) ООО «РКС-энерго» (потребитель ОАО «ЛОЭСК» - ПС-98 «Мега-Парнас» 110/10 кВ)

Назначение средства измерений

Система автоматизированная информационно-измерительная коммерческого учета электроэнергии (АИИС КУЭ) ООО «РКС-энерго» (потребитель ОАО «ЛОЭСК» - ПС-98 «Мега-Парнас» 110/10 кВ) (далее по тексту — АИИС КУЭ) предназначена для измерения активной и реактивной электроэнергии, формирования отчетных документов и передачи информации в ОАО «АТС», ОАО «СО ЕЭС» и прочим заинтересованным организациям в рамках согласованного регламента.

Описание средства измерений

АИИС КУЭ, выполненная на основе ИИС «Пирамида» (Госреестр № 21906-11), представляет собой многоуровневую автоматизированную измерительную систему с централизованным управлением и распределенной функцией измерения.

Измерительно-информационные каналы (ИИК) АИИС КУЭ состоят из трёх уровней:

1-й уровень – измерительно-информационные комплексы точек учета (ИИК ТУ), включающие измерительные трансформаторы напряжения (ТН), измерительные трансформаторы тока (ТТ), многофункциональные счетчики активной и реактивной электрической энергии (далее по тексту – счетчики), вторичные измерительные цепи и технические средства приемапередачи данных;

2-й уровень – измерительно-вычислительный комплекс электроустановки (ИВКЭ), включающий устройство сбора И передачи данных (УСПД) СИКОН C70 (Госреестр $N_{\underline{0}}$ 28822-05), устройство синхронизации времени (УСВ) УCB-2 (Госреестр № 41681-10), технические средства приема-передачи данных, каналы связи, для обеспечения информационного взаимодействия между уровнями системы.

3-й уровень – информационно-вычислительный комплекс (ИВК), включает в себя серверы баз данных (СБД) ОАО «Ленэнерго», ООО «РКС-Энерго», УСВ УСВ-1 (Госреестр № 28716-05), автоматизированные рабочие места (АРМ), а также совокупность аппаратных, каналообразующих и программных средств, выполняющих сбор информации с нижних уровней, ее обработку и хранение.

АИИС КУЭ решает следующие задачи:

- периодический (1 раз в сутки) и/или по запросу автоматический сбор привязанных к единому календарному времени результатов измерений приращений электроэнергии с заданной дискретностью учета (30 мин);
- периодический (1 раз в сутки) и/или по запросу автоматический сбор данных о состоянии средств измерений во всех ИИК;
- хранение результатов измерений и данных о состоянии средств измерений в специализированной базе данных, отвечающей требованию повышенной защищенности от потери информации (резервирование баз данных) и от несанкционированного доступа;
- периодический (1 раз в сугки) и/или по запросу автоматический сбор служебных параметров (изменения параметров базы данных, пропадание напряжения, коррекция даты и системного времени);
- передача результатов измерений в организации участники оптового рынка электроэнергии в рамках согласованного регламента;

- обеспечение защиты оборудования, программного обеспечения и данных от несанкционированного доступа на физическом и программном уровне (установка паролей и т.п.);
- диагностика и мониторинг функционирования технических и программных средств АИИС КУЭ;
- конфигурирование и настройка параметров АИИС КУЭ;
- ведение системы единого времени в АИИС КУЭ (синхронизация часов АИИС КУЭ).

Принцип действия:

Первичные токи и напряжения преобразуются измерительными трансформаторами в аналоговые унифицированные сигналы, которые по проводным линиям связи поступают на измерительные входы счетчика электроэнергии. В счетчике мгновенные значения аналоговых сигналов преобразуются в цифровой сигнал. По мгновенным значениям силы электрического тока и напряжения в микропроцессоре счетчика вычисляются соответствующие мгновенные значения активной, реактивной и полной мощности без учета коэффициентов трансформации. Электрическая энергия, как интеграл по времени от мощности, вычисляется для интервалов времени 30 минут.

Результаты измерений для каждого интервала измерения и 30-минутные данные коммерческого учета соотнесены с единым календарным временем. Результаты измерений электроэнергии (W, кВт·ч) передаются в целых числах.

УСПД, установленные на ПС-98 «Мега-Парнас» 110/10 кВ, один раз в минуту по проводным линиям связи обращаются к счетчикам и считывают соответствующий профиль мощности. Считанные профили используются УСПД для расчёта отчётных значений электроэнергии и мощности с учётом коэффициентов трансформации ТТ и ТН, т.к. в счётчиках для обеспечения возможности быстрой замены они установлены равными единице. УСПД выступает в качестве промежуточного хранилища измерительной информации, журналов событий.

СБД ОАО «Ленэнерго» по радиотелефонной связи стандарта GSM в режиме пакетной передачи данных с использованием технологии GPRS или в режиме канальной передачи данных с использованием технологии CSD (модемное соединение) опрашивает УСПД, установленные на ПС-98 «Мега-Парнас» 110/10 кВ, и считывает с них 30-минутные профили мощности для каждого канала учета, параметры электросети, а также журналы событий счётчиков и самого УСПД. Считанные данные записываются в СБД ОАО «Ленэнерго» (под управлением СУБД MS SQL Server).

Данные измерений, а также данные по состоянию технических и программных средств ИИК (журналы событий, статусы работоспособности каналов), по точкам измерения, опрашиваемым СБД ОАО «Ленэнерго», в автоматическом режиме один раз в сутки передаются на СБД ООО «РКС-энерго» по межмашинному обмену с использованием средств репликации БД ИИС «Пирамида».

СБД ООО «РКС-энерго» сохраняет вложения электронных сообщений, получаемых от СБД ОАО «Ленэнерго», на жесткий диск с последующим импортом информации в БД (под управлением СУБД MS SQL Server).

СБД ООО «РКС-энерго» при помощи программного обеспечения (ПО) осуществляет хранение, оформление справочных и отчетных документов и последующую передачу информации в ОАО «АТС», ОАО «СО ЕЭС» и прочим заинтересованным организациям в рамках согласованного регламента.

Доступ к информации, хранящейся в базе данных СБД, осуществляется с АРМ операторов АИИС КУЭ.

АИИС КУЭ оснащена системой обеспечения единого времени (СОЕВ). Для обеспечения единства измерений используется единое календарное время. В СОЕВ входят часы УСВ, счетчиков, УСПД, СБД ОАО «Ленэнерго», ООО «РКС-Энерго».

Сравнение показаний часов СБД ОАО «Ленэнерго», ООО «РКС-Энерго» и УСВ-1 происходит с цикличностью один раз в час. Синхронизация часов СБД ОАО «Ленэнерго», ООО «РКС-Энерго» и УСВ-1 осуществляется независимо от показаний часов СБД ОАО «Ленэнерго», ООО «РКС-Энерго» и УСВ-1. Сравнение показаний часов УСПД и УСВ-2 происходит один раз в минуту. Синхронизация часов УСПД и УСВ-2 осуществляется независимо от показаний часов УСПД и УСВ-1.

Сравнение показаний часов счетчиков и УСПД происходит при каждом обращении к счетчикам, но не реже одного раза в 30 минут. Синхронизация часов счетчиков ИИК и УСПД осуществляется при расхождении показаний часов счетчиков ИИК и УСПД на величину более чем ± 1 с.

Программное обеспечение

В АИИС КУЭ используется ПО «Пирамида 2000», в состав которого входят программы указанные в таблице 1. ПО «Пирамида 2000» обеспечивает защиту программного обеспечения и измерительной информации паролями в соответствии с правами доступа. Средством защиты данных при передаче является кодирование данных, обеспечиваемое программными средствами ПО «Пирамида 2000».

Таблица 1

Идентификацион-	Номер версии	Цифровой идентификатор программного	Алгоритм вычисления циф-
ное наименование	программного	обеспечения (контрольная сумма исполняемо-	рового идентификатора
ПО	обеспечения	го кода)	программного обеспечения
CalcClients.dll	3	e55712d0b1b219065d63da949114dae4	MD5
CalcLeakage.dll	3	b1959ff70be1eb17c83f7b0f6d4a132f	MD5
CalcLosses.dll	3	d79874d10fc2b156a0fdc27e1ca480ac	MD5
Metrology.dll	3	52e28d7b608799bb3ccea41b548d2c83	MD5
ParseBin.dll	3	6f557f885b737261328cd77805bd1ba7	MD5
ParseIEC.dll	3	48e73a9283d1e66494521f63d00b0d9f	MD5
ParseModbus.dll	3	c391d64271acf4055bb2a4d3fe1f8f48	MD5
ParsePiramida.dll	3	ecf532935ca1a3fd3215049af1fd979f	MD5
SynchroNSI.dll	3	530d9b0126f7cdc23ecd814c4eb7ca09	MD5
VerifyTime.dll	3	1ea5429b261fb0e2884f5b356a1d1e75	MD5

ПО ИВК «Пирамида» не влияет на метрологические характеристики АИИС КУЭ.

Уровень защиты программного обеспечения АИИС КУЭ от непреднамеренных и преднамеренных изменений соответствует уровню С по МИ 3286 - 2010.

Метрологические и технические характеристики

Состав ИИК АИИС КУЭ приведен в Таблице 2.

Метрологические характеристики ИИК АИИС КУЭ приведены в Таблице 3.

Таблица 2

№ ИИК	Наименование объекта	Состав ИИК					Вид элек-
		TT	TH	Счетчик	ИВКЭ	ИВК	гии
1	ПС-98 «Мега- Парнас» 110/10 кВ, РУ-10 кВ, 1 с. 10 кВ, яч.102 ф.98-102	ТЛО-10 кл.т. 0,5S Ктт = 300/5 Зав. № 19069; 19057; 19075 Госреестр № 25433-11	ЗНОЛП-ЭК-10 кл.т. 0,5 Ктн = 10000/√3/100/√3 Зав. № 2219; 2217; 2241 Госреестр № 40014-08	СЭТ-4ТМ.03М.05 кл. т 0,5S/1,0 Зав. № 0809100618 Госреестр № 36697-08	. C70 5642 28822-05	«Ленэнерго», «РКС-Энерго»	Активная Реактивная
2	ПС-98 «Мега- Парнас» 110/10 кВ, РУ-10 кВ, 2 с. 10 кВ, яч.202 ф.98-202	ТЛО-10 кл. т 0,5S Ктт = 300/5 Зав. № 19055; 19079; 19053 Госреестр № 25433-11	ЗНОЛП-ЭК-10 кл. т 0,5 Ктн = 10000/√3/100/√3 Зав. № 19602; 19598; 19599 Госреестр № 40014-08	СЭТ-4ТМ.03М.05 кл. т 0,5S/1,0 Зав. № 0808100782 Госреестр № 36697-08	CUKOH 3ab. № 0 Focpeec⊤p №		Активная Реактивная

Таблица 3

		Пределы допускаемой относительной погрешности ИИК при измерении актив-				
Номер ИИК	cosφ	ной электрической энергии в рабочих условиях эксплуатации d, %				
		$I_{1(2)}$ £ I_{M3M} < $I_{5\%}$	$I_{5\%}$ £ $I_{_{H3M}}$ < $I_{_{20\%}}$	I_{20} %£ I_{M3M} < I_{100} %	I _{100 %} £ I _{изм} £ I _{120 %}	
	1,0	±2,4	±1,7	±1,6	±1,6	
1, 2	0,9	±2,8	±1,9	±1,7	±1,7	
(TT 0,5S; TH 0,5;	0,8	±3,3	±2,2	±1,9	±1,9	
Счетчик 0,5S)	0,7	±3,9	±2,5	±2,1	±2,1	
	0,5	±5,6	±3,4	±2,7	±2,7	
		Пределы допускаемой относительной погрешности ИИК при измерении реак-				
Номер ИИК	cosφ	тивной электрической энергии в рабочих условиях эксплуатации d, %				
		$I_{1(2)}$ £ I_{M3M} < $I_{5\%}$	$I_{5\%}$ £ $I_{_{H3M}}$ < $I_{_{20\%}}$	I_{20} %£ I_{M3M} < I_{100} %	$I_{100\%}$ £ $I_{изм}$ £ $I_{120\%}$	
1.2	0,9	±6,7	±5,0	±4,2	±4,2	
1, 2 (TT 0,5S; TH 0,5;	0,8	±6,6	±4,3	±3,8	±3,8	
Счетчик 1,0)	0,7	±6,6	±4,0	±3,6	±3,6	
	0,5	±6,6	±3,7	±3,4	±3,4	

Ход часов компонентов АИИС КУЭ не превышает ±5 с/сут.

Примечания:

- 1. Погрешность измерений $d_{1(2)\%P}$ и $d_{1(2)\%Q}$ для $\cos j = 1,0$ нормируется от $I_{1\%}$, а погрешность измерений $d_{1(2)\%P}$ и $d_{1(2)\%Q}$ для $\cos j < 1,0$ нормируется от $I_{2\%}$.
- 2. Характеристики относительной погрешности ИИК даны для измерения электроэнергии и средней мощности (30 мин.).
- 3. В качестве характеристик относительной погрешности указаны границы интервала, соответствующие вероятности 0,95.
- 4. Нормальные условия эксплуатации компонентов АИИС КУЭ:
 - напряжение от 0,98 · Uном до 1,02 · Uном;
 - сила тока от Іном до 1,2·Іном, $\cos j = 0,9$ инд;
 - температура окружающей среды: от плюс 15 до плюс 25 °C.
- 5. Рабочие условия эксплуатации компонентов АИИС КУЭ:
 - напряжение питающей сети 0,9·Uном до 1,1·Uном;
 - сила тока от 0,01 Іном до 1,2 Іном.

температура окружающей среды:

- для счетчиков электроэнергии от плюс 5 до плюс 35 °C;
- для трансформаторов тока по ГОСТ 7746-2001;
- для трансформаторов напряжения по ГОСТ 1983-2001.
- 6. Трансформаторы тока по ГОСТ 7746-2001, трансформаторы напряжения по ГОСТ 1983-2001, счетчики электроэнергии в режиме измерения активной электроэнергии по ГОСТ Р 52323-2005, в режиме измерения реактивной электроэнергии по ГОСТ 52425-2005;
- 7. Допускается замена измерительных трансформаторов и счетчиков электроэнергии на аналогичные (см. п. 6 Примечания) утвержденных типов с метрологическими характеристиками не хуже, чем у перечисленных в Таблице 1. Замена оформляется актом в установленном на объекте порядке. Акт хранится совместно с настоящим описанием типа АИИС КУЭ как его неотъемлемая часть.

Параметры надежности применяемых в АИИС КУЭ измерительных компонентов:

- счетчик СЭТ-4ТМ.03М среднее время наработки на отказ не менее 140000 часов;
- УСВ-2 среднее время наработки на отказ не менее 35000 часов;
- УСВ-1 среднее время наработки на отказ не менее 35000 часов;
- УСПД СИКОН С70 среднее время наработки на отказ не менее 70000 часов.

Среднее время восстановления, при выходе из строя оборудования:

- для счетчика Тв ≤ 2 часа;
- для УСПД Тв ≤ 2 часа;
- для сервера Тв ≤ 1 час;
- для компьютера АРМ Тв ≤ 1 час;
- для модема Тв ≤ 1 час.

Защита технических и программных средств АИИС КУЭ от несанкционированного доступа:

- клеммники вторичных цепей измерительных трансформаторов имеют устройства для пломбирования;
- панели подключения к электрическим интерфейсам счетчиков защищены механическими пломбами;
- наличие защиты на программном уровне возможность установки многоуровневых паролей на счетчиках, УСВ, УСПД, сервере, АРМ;
- организация доступа к информации ИВК посредством паролей обеспечивает идентификацию пользователей и эксплуатационного персонала;
- защита результатов измерений при передаче.

Наличие фиксации в журнале событий счетчика следующих событий

- фактов параметрирования счетчика;
- фактов пропадания напряжения;
- фактов коррекции времени.

в журнале УСПД:

- параметрирования;
- пропадания напряжения;
- коррекции времени в счетчике и УСПД;
- пропадание и восстановление связи со счетчиком

Возможность коррекции времени в:

- счетчиках (функция автоматизирована);
- УСПД(функция автоматизирована);
- ИВК (функция автоматизирована).

Глубина хранения информации:

- счетчики СЭТ-4ТМ.03М тридцатиминутный профиль нагрузки в двух направлениях не менее 113,7 суток; при отключении питания не менее 10 лет;
- УСПД суточные данные о тридцатиминутных приращениях электроэнергии по каждому каналу и электроэнергии потребленной за месяц по каждому каналу не менее 45 суток; при отключении питания не менее 5 лет;
- ИВК хранение результатов измерений и информации о состоянии средства измерений не менее 3,5 лет.

Знак утверждения типа

Знак утверждения типа наносится на титульные листы эксплуатационной документации АИИС КУЭ типографским способом.

Комплектность средства измерений

Комплектность АИИС КУЭ приведена в таблице 4

Таблина 4

Наименование	Тип	Кол.
1	2	3
Трансформатор тока	ТЛО-10	6
Трансформатор напряжения	ЗНОЛП-ЭК-10	6
Счетчики электрической энергии многофункциональные	СЭТ-4ТМ.03М.05	2

Продолжение таблицы 4

1	2	3
УСПД	СИКОН С70	2
Источник бесперебойного питания	APC Smart-UPS 500 RM	1
Устройство синхронизации системного времени	УСВ-2	1
Устройство синхронизации системного времени	УСВ-1	2
СБД ООО «РКС-Энерго»	Intel Xeon	1
Коммутатор	D-Link DES-3028	1
Источник бесперебойного питания	APC Smart-UPS RM 1000	1
СБД ОАО «Ленэнерго»	HP ProLiant ML370G5	1
Сервер портов RS-232	Moxa NPort 5610	1
Коммутатор	D-Link DES-1005D	1
Источник бесперебойного питания	Rittal DK 7857.403	1
GSM модем	Siemens MC35i	1
Шлюз передачи данных от 2-х портов RS-232/422/485	ADAM-4570	1
Методика поверки	MΠ 1923/550-2014	1
Паспорт-формуляр	ЭССО.411711.АИИС.322 ПФ	1

Поверка

осуществляется по документу МП 1923/550-2014 «ГСИ. Система автоматизированная информационно-измерительная коммерческого учета электроэнергии (АИИС КУЭ) ООО «РКС-энерго» (потребитель ОАО «ЛОЭСК» - ПС-98 «Мега-Парнас» 110/10 кВ). Методика поверки», утвержденному ГЦИ СИ ФБУ «Ростест-Москва» в сентябре 2014 года.

Основные средства поверки:

- трансформаторов тока по ГОСТ 8.217-2003;
- трансформаторов напряжения − по ГОСТ 8.216-2011;
- счетчиков СЭТ-4ТМ.03М по методике поверки ИЛГШ.411152.145 РЭ1 согласованной с ГЦИ СИ ФГУ «Нижегородский ЦСМ» в 2007 г.;
- УСПД СИКОН С70 по методике поверки по методике ВЛСТ 220.00.000 И1, утвержденной ГЦИ СИ ВНИИМС в 2005 г.;
- УСВ-2 по документу «ВЛСТ 237.00.000И1», утверждённому ГЦИ СИ ФГУП ВНИИФТРИ в 2010 г.;
- УСВ-1 по документу «Устройство синхронизации времени УСВ-1. Методика поверки 221 00.000МП» утверждённым ГЦИ СИ ФГУП ВНИИФТРИ в 2004 г.;
- ИИС «Пирамида» по документу «Системы информационно-измерительные контроля и учета энергопотребления «Пирамида». Методика поверки» ВЛСТ 150.00.000 И1, утвержденному ГЦИ СИ ФГУП «ВНИИМС» в 2010 г.;

Радиочасы МИР РЧ-01, принимающие сигналы спутниковой навигационной системы Global Positioning System (GPS) (Госреестр № 27008-04);

Переносной компьютер с ПО и оптический преобразователь для работы со счетчиками системы, ПО для работы с радиочасами МИР РЧ-01;

Термометр по ГОСТ 28498-90, диапазон измерений от минус 40 до плюс 50° С, цена деления 1° С.

Сведения о методиках (методах) измерений

Методика измерений приведена в документе: «Методика (метод) измерений количества электрической энергии (мощности) с использованием автоматизированной информационно-измерительной системы коммерческого учета электроэнергии (АИИС КУЭ) ООО «РКС-энерго» (потребитель ОАО «ЛОЭСК» - ПС-98 «Мега-Парнас» 110/10 кВ)». Свидетельство об аттестации методики (метода) измерений № 0030/2014-01.00324-2011 от 18.07.2014 г.

Нормативные документы, устанавливающие требования к АИИС КУЭ ООО «РКС-энерго» (потребитель ОАО «ЛОЭСК» - ПС-98 «Мега-Парнас» 110/10 кВ)

- 1 ГОСТ Р 8.596-2002 ГСИ. Метрологическое обеспечение измерительных систем. Основные положения.
- 2 ГОСТ 22261-94 Средства измерений электрических и магнитных величин. Общие технические условия.
- 3 ГОСТ 34.601-90 Информационная технология. Комплекс стандартов на автоматизированные системы. Автоматизированные системы. Стадии создания.

Рекомендации по областям применения в сфере государственного регулирования обеспечения единства измерений

- при осуществлении торговли.

Изготовитель

ООО «ЭнергоСнабСтройСервис»

Адрес (юридический): 121500, г. Москва, Дорога МКАД 60 км, д.4А, офис 204

Адрес (почтовый): 600021, г. Владимир, ул. Мира, д.4а, офис № 3

Телефон: (4922) 33-81-51, 34-67-26 Факс: (4922) 42-44-93

Испытательный центр

Государственный центр испытаний средств измерений

Федеральное бюджетное учреждение «Государственный региональный центр стандартизации, метрологии и испытаний в г. Москве» (ФБУ «Ростест-Москва»).

117418 г. Москва, Нахимовский проспект, 31

Тел.(495) 544-00-00, 668-27-40, (499) 129-19-11 Факс (499) 124-99-96

Аттестат аккредитации ГЦИ СИ ФБУ «Ростест-Москва» по проведению испытаний средств измерений в целях утверждения типа № 30010-10 от 15.03.2010 г.

Заместитель			
Руководителя Федерального агент-			
ства по техническому регулирова-			
нию и метрологии			Ф.В. Булыгин
	3.6		2014
	М.п.	« »	2014 г.