ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Система автоматизированная информационно-измерительная коммерческого учета электрической энергии и мощности досугово-развлекательного и оздоровительного комплекса «Пять Озер»

Назначение средства измерений

Система автоматизированная информационно-измерительная коммерческого учета электрической энергии и мощности досугово-развлекательного и оздоровительного комплекса «Пять Озер» (далее – АИИС КУЭ) предназначена для измерения активной и реактивной электрической энергии и мощности, потребленной отдельными технологическими объектами комплекса, сбора, обработки, хранения и отображения полученной информации.

Описание средства измерений

АИИС КУЭ представляет собой многофункциональную, многоуровневую систему с централизованным управлением и распределенной функцией измерения.

АИИС КУЭ решает следующие задачи:

- измерение 30-минутных приращений активной и реактивной электроэнергии;
- периодический (1 раз в 30 мин, 1 раз в сутки) и/или по запросу автоматический сбор привязанных к единому календарному времени результатов измерений приращений электроэнергии с заданной дискретностью учета (30 мин);
- хранение результатов измерений в специализированной базе данных, отвечающей требованию повышенной защищенности от потери информации (резервирование баз данных) и от несанкционированного доступа;
- предоставление по запросу контрольного доступа к результатам измерений данных о состоянии средств измерений со стороны организаций-участников розничного рынка электроэнергии;
- обеспечение защиты оборудования, программного обеспечения и данных от несанкционированного доступа на физическом и программном уровне (установка паролей и т.п.);
- диагностика и мониторинг функционирования технических и программных средств АИИС КУЭ;
- конфигурирование и настройка параметров АИИС КУЭ;
- ведение единого времени в АИИС КУЭ (коррекция времени).

АИИС КУЭ включает в себя следующие уровни:

1-й уровень – уровень информационно-измерительных комплексов точек измерений (ИИК ТИ), включающий:

- измерительные трансформаторы тока (ТТ);
- вторичные измерительные цепи;
- многофункциональные электронные счетчики электрической энергии.
- 2-й уровень уровень информационно-вычислительного комплекса электроустановки (ИВКЭ), включающий:
 - устройство сбора и передачи данных (УСПД);
 - технические средства приема-передачи данных (каналообразующая аппаратура).
- 3-й уровень уровень информационно-вычислительного комплекса (ИВК), включающий:
 - сервер баз данных ЦСОД (далее сервер);
 - автоматизированное рабочее место (АРМ) энергетика;
 - технические средства приема-передачи данных (каналообразующая аппаратура);

- программное обеспечение ПО «АльфаЦЕНТР».

Первичные фазные токи и напряжения трансформируются измерительными трансформаторами в аналоговые сигналы низкого уровня, которые по проводным линиям связи поступают на соответствующие входы электронного счетчика электрической энергии. Счетчик производит измерение действующих (среднеквадратических) значений напряжения (U) и тока (I) и рассчитывает полную мощность $S = U \cdot I$.

Измерение активной мощности счетчиком выполняется путем перемножения мгновенных значений сигналов напряжения (U) и тока (I) и интегрирования полученных значений мгновенной мощности(P) по периоду основной частоты сигналов.

Реактивная мощность (Q) рассчитывается в счетчике по алгоритму $Q = (S^2 - P^2)^{0.5}$.

Средние значения активной и реактивной мощностей рассчитываются путем интегрирования текущих значений P и Q на 30-минутных интервалах времени.

Цифровой сигнал с выходов счетчиков по проводным линиям связи поступает на входы УСПД. УСПД осуществляет обработку результатов измерений, а в частности расчет расхода активной и реактивной электрической энергии и мощности с учетом коэффициентов трансформации ТТ и ТН, хранение полученной информации и передачу накопленных данных на верхний уровень системы (уровень ИВК), а также отображение информации на подключаемых к УСПД устройствах.

На верхнем – третьем уровне системы выполняется последующее формирование и хранение поступающей информации, оформление справочных и отчетных документов. Передача результатов измерений и данных о состоянии средств измерений внешним организациям осуществляется по основному каналу телефонной сети общего пользования и по резервному каналу GSM связи.

АИИС КУЭ имеет систему обеспечения единого времени (СОЕВ), включающую в себя устройство синхронизации системного времени энергосбытовой компании, осуществляющее синхронизацию часов УСПД по эталонным сигналам точного времени.

УСПД осуществляет коррекцию показаний часов счетчиков и показаний часов сервера АИИС КУЭ, коррекция выполняется автоматически при расхождении показаний часов счетчиков и сервера с часами УСПД более, чем на ± 2 с. Факт каждой коррекции регистрируется в Журнале событий счетчиков, УСПД и сервера.

Журналы событий счетчиков электрической энергии и УСПД отражают время (дата, часы, минуты) коррекции показаний часов указанных устройств и расхождение времени в секундах корректируемого и корректирующего устройств в момент непосредственно предшествующий корректировке.

Состав измерительных каналов приведен в табл. 1.

Таблица 1

Номер	Наименование	Состав измерительных каналов				
ИК	присоединения	TT	Счетчик электрической энергии	УСПД	Оборудование ИВК (3-й уровень)	
1	2	3 4		5	6	
1	ГРЩ-1, Ввод 1	ТСН-12, 2000/5; 0,5S; ГОСТ 7746-2001; Госреестр СИ № 26100-03 Зав. номер: 73675 85022 85014	Меркурий 233 ART2-03KR Іном (Імакс)= 5(10) А Uном =3x230/400 В Класс точности: активная энергия по ГОСТ Р 52323-2005 – 0,5S; реактивная энергия по ГОСТР52425-2005 – 1,0 Госреестр СИ № 34196-10 Заводской номер: 17482208	RTU-327L01- E2-B06-M02 Госреестр СИ № 41907-09 Зав. номер 007802	Каналообразующая аппаратура; сервер ЦСОД; АРМ энергетика; ПО «АльфаЦЕНТР»	

Продолжение таблицы 1

1	2	3	4	5	6
2	ГРЩ-1, Ввод 2	ТСН-12, 2000/5; 0,5S; ГОСТ 7746-2001; Госреестр СИ № 26100-03 Зав. номер: 85030 85020 73667	Меркурий 233 ART2-03KR Іном (Імакс)= 5(10) A Uном =3x230/400 В Класс точности: активная энергия по ГОСТ Р 52323-2005 – 0,5S; реактивная энергия по ГОСТР52425-2005 – 1,0 Госреестр СИ № 34196-10 Заводской номер: 17482212		
3	ГРЩ-2, Ввод 1	ТСН-12, 2000/5; 0,5S; ГОСТ 7746-2001; Госреестр СИ № 26100-03 Зав. номер: 115561 115559 115562	Меркурий 233 ART2-03KR Іном (Імакс)= 5(10) A Uном =3x230/400 В Класс точности: активная энергия по ГОСТ Р 52323-2005 – 0,5S; реактивная энергия по ГОСТР52425-2005 – 1,0 Госреестр СИ № 34196-10 Заводской номер: 17482201		гетика; ПО «АльфаЦЕНТР»
4	ГРЩ-2, Ввод 2	ТСН-12, 2000/5; 0,5S; ГОСТ 7746-2001; Госреестр СИ № 26100-03 Зав. номер: 115558 115563 115560	Меркурий 233 ART2-03KR Іном (Імакс)= 5(10) А Uном =3x230/400 В Класс точности: активная энергия по ГОСТ Р 52323-2005 – 0,5S; реактивная энергия по ГОСТР52425-2005 – 1,0 Госреестр СИ № 34196-10 Заводской номер: 17482270	RTU-327L01- E2-B06-M02 Госреестр СИ № 41907-09 Зав. номер 007802	аппаратура; сервер ЦСОД; АРМ энергетика; ПО «АльфаЦЕНТР»
5	ВРУ-А	ТСН-6.2, 200/5; 0,5S; ГОСТ 7746-2001; Госреестр СИ № 26100-03 Зав. номер: 120034 120032 120033	Меркурий 233 ART2-03KR Іном (Імакс)= 5(10) A		Каналообразующая аппарату
6	ГРЩ3	Т-0,66М У3, 1500/5; 0,5S; ГОСТ 7746-2001; Госреестр СИ № 47957-12 Зав. номер: 88194 122949 88196	Меркурий 233 ART2-03KR Іном (Імакс)= 5(10) A Uном =3x230/400 В Класс точности: активная энергия по ГОСТ Р 52323-2005 – 0,5S; реактивная энергия по ГОСТР52425-2005 – 1,0 Госреестр СИ № 34196-10 Заводской номер: 17482209		

Примечание: Допускается замена измерительных трансформаторов, счетчиков электрической энергии на аналогичные, утвержденных типов с метрологическими характеристиками не хуже, чем у перечисленных в табл. 1. Замена оформляется актом. Акт хранится совместно с настоящим описанием типа АИИС КУЭ, как его неотъемлемая часть.

Программное обеспечение

В АИИС КУЭ используется программное обеспечение (ПО) «АльфаЦЕНТР».

Экспертиза ПО «АльфаЦЕНТР» проведена ФГУП «ВНИИМС» 31 мая 2012 г. на соответствие требованиям нормативной документации.

Уровень защиты ΠO «Альфа ЦЕНТР» соответствует уровню «С» в соответствии с разделом 2.6 МИ 3286-2010.

Идентификационные данные ПО «АльфаЦЕНТР» приведены в табл. 2.

Таблица 2

Наименование	Идентификаци-	Номер версии	Цифровой идентифи-	Алгоритм вычисления
программного	онное наимено-	программного	катор программного	цифрового идентифи-
обеспечения	вание ПО	обеспечения	обеспечения	катора программного
			(контрольная сумма	обеспечения
			исполняемого кода)	
«АльфаЦЕНТР»	отсутствует	12.01	3E736B7F380863F44C	MD5
			C8E6F7BD211C54	

Метрологические и технические характеристики

Количество измерительных каналов (ИК) коммерческого учета	6
Номинальное напряжение на вводах системы, кВ	0,4
Отклонение напряжения от номинального, %	±10
Номинальные значения первичных токов TT измерительных каналов, A	200 (ИК 5) 1500 (ИК 6) 2000 (ИК 1 – 4
Диапазон изменения тока в % от номинального значения тока	от 1 до 120
Коэффициент мощности, cos ф	от 0,5 до 1
Диапазон рабочих температур для компонентов системы, °C – трансформаторов тока, счетчиков, УСПД	от 0 до 35
Пределы допускаемой абсолютной погрешности часов всех компонентов системы, с	±5
Средняя наработка на отказ счетчиков Меркурий 233 ART2-03KR, ч, не менее	150000

Пределы допускаемых относительных погрешностей ИК (измерения активной и реактивной электрической энергии и мощности), %, для рабочих условий эксплуатации АИИС КУЭ, приведены в табл. 3.

Таблица 3

Номер ИК	Значение cosj	$0.01I_{\text{hom}} \le I < 0.05I_{\text{hom}}$	$0.05I_{\text{hom}} \leq I < 0.2I_{\text{hom}}$	$0.2I_{\text{hom}} \leq I < 1I_{\text{hom}}$	$1I_{\text{hom}} \leq I \leq 1{,}2I_{\text{hom}}$	
1	1 2 3		4	5	6	
Активная энергия						
1 – 6	1,0	±2,1	±1,2	±1,1	±1,1	

Продолжение таблицы 3

1	2	3	4	5	6		
	Активная энергия						
$1-6$ 0,8 $\pm 3,1$ $\pm 2,0$ $\pm 1,5$					±1,5		
1 – 6	0,5	±5,5	±3,1	±2,2	±2,2		
Реактивная энергия							
1 – 6	0,8	±5,1	±3,7	±3,1	±3,1		
1 – 6	0,5	±3,6	±2,9	±2,5	±2,5		

Надежность применяемых в системе компонентов:

- счетчики электрической энергии Меркурий 233ART2KR среднее время наработки на отказ, не менее 150000 ч, средний срок службы 30 лет;
- трансформатор тока T-0,66M У3 среднее время наработки на отказ, не менее 4000000 ч, средний срок службы 30 лет;
- УСПД RTU 327L средний срок службы 30 лет.

Надежность системных решений:

- резервирование каналов связи: для передачи информации внешним организациям организованы два независимых канала связи.

Регистрация в журналах событий компонентов системы времени и даты:

- а) счетчиками электрической энергии:
- попыток несанкционированного доступа;
- связи со счетчиком, приведших к каким-либо изменениям данных;
- коррекции текущих значений времени и даты;
- отсутствие напряжения при наличии тока в измерительных цепях;
- перерывов питания;
- самодиагностики (с записью результатов);
- б) УСПД:
- попыток несанкционированного доступа;
- связи с УСПД, приведшие к каким-либо изменениям данных;
- перезапуска УСПД;
- коррекции текущих значений времени и даты;
- перерывов питания;
- самодиагностики (с записью результатов).

Защищённость применяемых компонентов:

- а) механическая защита от несанкционированного доступа и пломбирование:
- счетчиков электрической энергии;
- клемм вторичных обмоток трансформаторов тока;
- промежуточных клеммников вторичных цепей тока и напряжения;
- испытательных клеммных коробок;
- УСПД:
- б) защита информации на программном уровне:
- установка паролей на счетчиках электрической энергии;
- установка пароля на УСПД;
- установка пароля на сервер;
- возможность использования цифровой подписи при передаче данных.

Глубина хранения информации:

- счетчик электрической энергии тридцатиминутный профиль нагрузки в двух направлениях не менее 35 суток; сохранность данных в памяти при отключении питания 30 лет;
- УСПД тридцатиминутный профиль нагрузки в двух направлениях по каждому ИК не менее 35 суток, сохранность данных в памяти при отключении питания не менее 5 лет;
- сервер хранение результатов измерений и информации о состояний средств измерений за весь срок эксплуатации системы.

Знак утверждения типа

наносится на титульный лист эксплуатационной документации на систему автоматизированную информационно-измерительную коммерческого учета электрической энергии и мощности досугово-развлекательного и оздоровительного комплекса «Пять Озер».

Комплектность средства измерений

1. Трансформатор тока ТСН-12	- 12 шт.
2. Трансформатор тока ТСН-6.2	- 3 шт.
3. Трансформатор тока Т-0,66М УЗ	- 3 шт.
4. Счетчик электрической энергии Меркурий 233 ART2-03KR	- 6 шт.
5. УСПД RTU-327L01-E2-B06-M02	- 1 шт.
6. Сотовый терминал iRZ MC 52i	- 1 шт.
7. Преобразователь интерфейсов MOXA NPort 6450	- 1 шт.
8. Сервер ЦСОД с АРМ	- 1 шт.
9. Программное обеспечение «АльфаЦЕНТР»	- 1 шт.
10. Методика измерений ЭУАВ.101304.039.МИ	- 1 шт.
11. Паспорт ЭУАВ.101304.039.АИ-ПС	- 1 шт.

Поверка

осуществляется по МИ 3000-2006 «ГСИ. Система автоматизированная информационноизмерительная коммерческого учета электрической энергии. Типовая методика поверки».

Перечень эталонов, применяемых при поверке:

- средства поверки и вспомогательные устройства, в соответствии с методиками поверки, указанными в описаниях типа на измерительные компоненты АИИС КУЭ, а также приведенные в табл. 2 МИ 3000-2006.

Сведения о методиках (методах) измерений

Измерения производятся в соответствии с документом ЭУАВ.101304.039МИ «Методика измерений активной и реактивной электрической энергии и мощности с использованием системы автоматизированной информационно-измерительной коммерческого учета электрической энергии и мощности досугово-развлекательного и оздоровительного комплекса «Пять Озер». Свидетельство об аттестации № 01.00292.432.00341-2014 от 20.08.2014 г.

Нормативные и технические документы, устанавливающие требования к системе автоматизированной информационно-измерительной коммерческого учета электрической энергии и мощности досугово-развлекательного и оздоровительного комплекса «Пять Озер»

1. ГОСТ 22261-94 «Средства измерений электрических и магнитных величин. Общие технические условия».

- 2. ГОСТ Р 8.596-2002 «ГСИ. Метрологическое обеспечение измерительных систем. Основные положения».
- 3. МИ 3000-2006 «Системы автоматизированные информационно-измерительные коммерческого учета электрической энергии. Типовая методика поверки».

Рекомендации по областям применения в сфере государственного регулирования обеспечения единства измерений

- при осуществление торговли и товарообменных операций.

Изготовитель

ООО «Энергоучет-Автоматизация»

Адрес: 195197, г. Санкт-Петербург, ул. Жукова, д. 19.

Тел./факс (812) 540-14-84. E-mail: energouchet@mail.ru

Испытательный центр

ГЦИ СИ ФБУ «Тест-С.-Петербург»

Адрес: 190103, г. Санкт-Петербург, ул. Курляндская, д. 1. Тел.: (812) 244-62-28, 244-12-75, факс: (812) 244-10-04.

E-mail: letter@rustest.spb.ru.

Аттестат аккредитации ГЦИ СИ ФБУ «Тест-С.-Петербург» по проведению испытаний средств измерений в целях утверждения типа № 30022-10 от 20.12.2010 г.

Заместитель Руководителя Федерального агентства по техническому регулированию и метрологии

			Ф.В. Булыгин
М.п.	«	»	2014 г.