ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Регистраторы силы нажатия тормозных шин вагонных замедлителей OMEGA-15-IR

Назначение средства измерений

Регистраторы силы нажатия тормозных шин вагонных замедлителей OMEGA-15-IR (далее – прибор) предназначены для измерений, регистрации и архивирования силы нажатия тормозных шин вагонных замедлителей в любой точке тормозной системы замедлителей при разных ступенях торможения.

Описание средства измерений

Принцип действия прибора: силопреобразующее устройство (СПУ) помещается между тормозными шинами вагонных замедлителей, которые при сжатии воздействуют на чувствительный элемент СПУ. При сжатии чувствительного элемента шинами замедлителя элемент преобразует силу нажатия в аналоговый электрический сигнал. Аналоговый электрический сигнал преобразуется в цифровую форму и значение силы нажатия и по инфракрасному каналу передается на пульт. Пульт принимает значение силы, выводит это значение на дисплей и регистрирует силу нажатия в энергонезависимой памяти.

Прибор состоит из СПУ и пульта.

СПУ представляет собой переносное устройство, состоящее из опорной площадки, с закрепленными на ней чувствительным к нажатию элементом, инфракрасным передатчиком, элементами питания и электронным модулем, преобразующим аналоговый электрический сигнал от датчиков в значение силы;

Пульт представляет собой переносной электронный блок с цифровым индикатором, инфракрасным приемником и элементами питания. Пульт принимает значение силы по инфракрасному каналу, выводит это значение на дисплей, и регистрирует силу нажатия в энергозависимой памяти.

Прибор изготавливается в следующих модификациях:

- 1. OMEGA-15-IR-A с питанием от аккумуляторов или батарей типа AA;
- 2. OMEGA-15-IR-Б с питанием от батарей типа AA;
- 3. OMEGA-15-IR-К с питанием от аккумуляторов или батарей типа AA и дистанционной передачей результатов изменений от пульта на персональный компьютер.

СПУ имеет уникальный идентификационный номер (ID), который передается и регистрируется каждый раз вместе с измеренным значением силы. Таким образом, возможна взаимозаменяемость пультов из разных комплектов приборов. Уникальный идентификационный номер СПУ нанесен на табличке прибора.

Каждое измеренное значение может быть сохранено в одной из ячеек энергонезависимой памяти. Всего возможно сохранение 999 значений результатов измерений. В процессе сохранения результатов измерений пользователь имеет возможность выбора номера ячейки, что позволяет при необходимости идентифицировать вагонный замедлитель и точку измерения силы при последующем анализе серии измерений.

Внешний вид прибора приведен на рисунке 1.

Рисунок 1 – Внешний вид прибора

Программное обеспечение

Программное обеспечение (ПО) прибора реализовано аппаратно и является встроенным. Изменение настроек прибора и ПО через интерфейс пользователя невозможно. Защита от несакционированного доступа к настройкам обеспечивается невозможностью изменения ПО и его настроек без применения специализированного оборудования производителя.

Идентификационные данные (признаки) ПО приведены в таблице 1.

Таблица 1

Идентификационные данные (признаки)	Значение	
Идентификационное наименование ПО	Indr	
Номер версии (идентификационный номер) ПО	V-4.2	
Цифровой идентификатор ПО	A537	
Другие идентификационные данные	_	

Уровень защиты ПО прибора от непреднамеренных и преднамеренных изменений соответствует уровню «высокий» по Р 50.2.077-2014.

Метрологические и технические характеристики

Диапазон измерения силы, кН	от 0 до 200
Дискретность отсчета, кН.	1
Пределы допускаемой приведенной погрешности при измерении силы, %	±1,0
Максимальная неразрушающая нагрузка, кН, не более	495
Разрушающая перегрузка, кН, не менее	990
Расстояние между точками приложения силы от тормозных шин, мм	130±1
Габариты СПУ, мм	300×220×120
Габариты пульта, мм	
1	7.5

Знак утверждения типа

наносится на маркировочную табличку СПУ и на титульный лист руководства по эксплуатации типографским или иным способом.

Комплектность средства измерений

Комплектность прибора приведена в таблице 2.

Таблица 2

No	Наименование	Количество по модификациям		
		A	Б	К
1	Силоприемное устройство	1	1	1
2	Пульт	1	1	1
3	Зарядное устройство для аккумуляторов Ni-CD и Ni-MH с блоком питания и инструкцией	1	_	1
4	Аккумулятор, тип АА	4	1	4
5	Элемент питания, тип АА	_	4	_
6	Блок сопряжения с ПК	_	-	1
7	Кабель «USB - мини USB»	_	_	1
8	Ящик (кейс) для переноски	1	1	1
9	Руководство по эксплуатации с паспортом	1	1	1
10	Методика поверки	1	1	1

Поверка

осуществляется по документу МП 91-261-2014 «Регистраторы силы нажатия тормозных шин вагонных замедлителей OMEGA-15-IR. Методика поверки», утвержденному в декабре 2014 г.

Основные средства поверки:

- машина силопроизводящая, диапазон измерений (20-200) кH, пределы допускаемой относительной погрешности \pm 0,25 %.

Сведения о методиках (методах) измерений

Методика измерений представлена в 3.3 руководства по эксплуатации прибора ОМЕGA-15-IR.000.000 РЭ.

Нормативные и технические документы, устанавливающие требования к регистраторам силы нажатия тормозных шин вагонных замедлителей OMEGA-15-IR

- 1 ГОСТ Р 8.663-2009 ГСИ. Государственная поверочная схема для средств измерений силы.
- 2 ТУ 3185-018-45627446-12 «Регистратор силы нажатия тормозных шин вагонных замедлителей OMEGA-15-IR. Технические условия».
 - 3 Техническая документация ООО ИК «ВЕСКОМ».

Рекомендации по областям применения в сфере государственного регулирования обеспечения единства измерений

- при выполнении работ по оценке соответствия продукции и иных объектов обязательным требованиям, установленным законодательством $P\Phi$ о техническом регулировании.

Изготовитель

ООО ТД «ВЕСКОМ»

Адрес: 454074, Россия, г. Челябинск, ул. Механическая, д. 26 Телефон: +7 (351) 268-41-52 E-mail: mail@omega-15.com

Испытательный центр

Государственный центр испытаний средств измерений ФГУП «Уральский научно-исследовательский институт метрологии» (ГЦИ СИ «ФГУП «УНИИМ»)

Адрес: 620000, г. Екатеринбург, ул. Красноармейская, 4

Тел.: (343) 350-26-18 Факс: (343) 350-20-39

E-mail: uniim@uniim.ru

Аттестат аккредитации ГЦИ СИ ФГУП «УНИИМ» по проведению испытаний средств измерений в целях утверждения типа № 30005-11 от 03.08.2011 г.

Заместитель Руководителя Федерального агентства по техническому регулированию и метрологии

С.С. Голубев М.п. « » 2015 г.