ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Анализаторы качества электрической энергии PQ-Вох модификаций PQ-Вох 100, PQ-Вох 200

Назначение средства измерений

Анализаторы качества электрической энергии PQ-Вох модификаций PQ-Вох 100, PQ-Вох 200 (далее анализаторы PQ-Вох) предназначены для измерений и регистрации всех физически определенных параметров трехфазных и однофазных сетей и контроля качества электроэнергии в соответствии с ГОСТ Р 51317.4.30-2008, а также передачи собранных данных для последующего анализа и хранения.

Описание средства измерений

Принцип действия анализаторов PQ-Вох основан на аналого-цифровом преобразовании мгновенных значений входных сигналов тока и напряжения с последующим вычислением значений измеряемых величин из полученного массива выборок в соответствии со встроенным программным обеспечением (ПО).

Приборы выполнены в виде переносного средства измерений (СИ) и состоят из самого прибора, набора из пяти гибких проводников с зажимами для измерения напряжения, двух гибких проводников для подключению к источнику питания (PQ-Box 100) или адаптера питания (PQ-Box 200). Корпус прибора имеет разъём для подключения токовых клещей.

Анализаторы PQ-Вох представляют собой приборы с микропроцессорным программным управлением, часами реального времени, блоком энергонезависимой памяти и блоками аналого-цифрового преобразования. Внутри корпуса прибора установлены печатные платы, на которых смонтированы элементы электрической схемы.

Приборы выполнены в ударопрочных влагопылезащищенных корпусах.

Анализаторы PQ-Вох выпускается в двух модификациях: PQ-Вох 100 и PQ-Вох 200, отличающиеся наличием в модификации PQ-Вох 200: цветного дисплея, дискретного входа запуска осциллографирования, дополнительного аналогового входа, адаптера питания и интерфейса TCP/IP.

Архивирование результатов измерений производится во внутренней энергонезависимой памяти.

Анализаторы имеют в своем составе последовательный интерфейс RS-232 для соединения с блоком синхронизации времени. Кроме того, в дополнительной комплектации они могут быть оснащены встроенным интерфейсом TCP/IP для подключения к системе SCADA по протоколам ГОСТ Р МЭК 61850-7-2-2009 или ГОСТ Р МЭК 60870-5-103-2005.

Приборы обеспечивают индикацию на графическом дисплее результатов измерения значений основных ПКЭ и параметров электрической сети.

Устройства могут использовать три различных встроенных регистратора нарушений параметров сети:

- осциллографический регистратор позволяет сохранять значения сигнала, измеряемые через каждые 0,1 мс;
- среднеквадратичный регистратор позволяет сохранять среднеквадратические значения сигнала, вычисленные за полупериод (10 мс);
- регистратор гармоник сохраняет в памяти спектр сигнала, содержащий все гармоники со 2-й по 50-ю. Измерения всех регистраторов производятся в течение произвольно выбранного периода времени до и после нарушения параметров. При необходимости запуск процесса измерения может быть осуществлён от внешнего сигнала через двоичный вход (PQ-Вох 200).

PQ-Вох 100 производится в четырех вариантах исполнения:

- модель PQ-Box 100 light. Данный прибор предназначен для проведения измерений

параметров электрической энергии, а также для анализа качества напряжения согласно стандарту ГОСТ Р 54149-20102.

- модель PQ-Box 100 basic. Прибор имеет функцию самописца для записи и хранения измеренных величин.
- модель PQ-Box 100 expert. Данный вариант прибора имеет дополнительно широкие функции включения измерений, инициирующих осциллографирование действующих значений величин параметров электрической энергии с периодом 10 мс.
- модель PQ-Box 100 expert с функцией анализа сигналов импульсного управления (ripple control). По сравнению с версией expert добавлена функция записи сигналов импульсного управления (ripple control).

Питание анализаторов PQ-Вох осуществляется непосредственно от измеряемой сети (PQ-Вох 100) или от адаптера питания (PQ-Вох 200).

Внешний вид анализаторов PQ-Вох и места пломбирования после поверки изображены на рис.1, 2.

Клеймо поверителя наносится в виде наклейки на один из винтов корпуса (для PQ-Вох 100) и на стыковочный шов стенок корпуса (для PQ-Вох 200).

Рис.1 Внешний вид и места пломбирования PQ-Box 100.

место пломбирования после поверки

место пломбирования после поверки

Рис.2 Внешний вид и места пломбирования РО-Вох 200.

Программное обеспечение

Программное обеспечение анализаторов PQ-Вох состоит из встроенного программного обеспечения (ВПО) и прикладной программы для установки на персональный компьютер пользователя (ПК). Результаты измерений и расчетов могут индицироваться непосредственно на дисплее приборов или на дисплее компьютера.

К метрологически значимой части программного обеспечения относится программа прошивки прибора (ВПО), которая устанавливается в процессе производства изделия и состоит из трех модулей: Boot loader, MCU, DCP. Доступ к ней не возможен без нарушения пломб и вскрытия прибора.

Программирование сервисных и интерфейсных функций осуществляется с помощью программного обеспечения WinPQ mobile через USB порт.

Прикладные программы не содержат метрологически значимых частей.

Приборы выполняют самодиагностику и обеспечивают защиту от несанкционированного доступа к информации и управлению. В Приборах предусмотрена двухуровневая система паролей, определяющая доступ к соответствующим режимам работы.

Идентификационные данные встроенного программного обеспечения представлены в таблицах 1и 2.

Таблица 1

Идентификационные данные (признаки)	Значение
Идентификационное наименование ПО	PQ-Box 100 (Boot loader, MCU, DCP)
Номер версии (идентификационный номер) ПО	v 1.5.xx* (v 1.201, v 1.142, v 1.244)
Цифровой идентификатор ПО	-
* - где хх ≥ 38	

Таблица 2

Идентификационные данные (признаки)		Значение
Идентификационное наименование ПО	PQ-Box 200	(Boot loader, MCU, DCP)
Номер версии (идентификационный номер) ПО	v 1.8.xx*	(v 0.173, v 1.217, v 2.006)
Цифровой идентификатор ПО	-	
* - где xx ≥ 13		

Уровень защиты программного обеспечения устройств от непреднамеренных и преднамеренных изменений соответствует уровню «высокому» по Р 50.02.077-2014. Влияние программного обеспечения учтено при нормировании метрологических и технических характеристик приборов.

Метрологические и технические характеристики

Основные метрологические и технические характеристики анализаторов качества электрической энергии PQ-Вох приведены в таблице 3 и 4.

Таблица 3

1 аолица 3 Наименование характеристики	Zuguanna vor	аутепистики
паименование характеристики	Значение характеристики	
	PQ-Box 100	PQ-Box 200
Входные на	пряжения	
	Выставляется	Выставляется
	программно в	программно в
Номинальное напряжение Uном, В	пределах диапазона	пределах диапазона
	измерений	измерений
	напряжения	напряжения
Диапазон измерений напряжений фаза-ноль, В	0-500 (перем.)	0-500 (перем.)
	0–700 (пост.)	0–700 (пост.)
фаза-фаза, В	0-830 (перем.)	0-870 (перем.)
φασα φασα, Β	0–1000 (пост.)	0–1000 (пост.)
	1000мВ (перем.)	700мВ (перем.)
	для клещей M3.U;	для клещей M3.U;
	300 мВ (перем.)	230 мВ (перем.)
Диапазон измерений напряжения в канале токов	для клещей MFC-150	для клещей MFC-150.
дианазон измерении наприжении в канале токов		вспомогательный
		вход:
		1000мВ, (перем.)
		1400 мВ (пост.)
Напряжение питания, В	140 – 280 (перем.)	адаптер
	100 – 240 (пост.)	100 – 240 (пост.)
Изоляция	CAT IV/300V L-E (CAT III/ 600V L-E)	
Номинальная частота f _{ном} , Гц	50, 60	
Класс защиты	IP65	IP65
Входные		
Токовые клещи для измерений мал		
Номинальное значение тока Іном, А		0
Диапазон измерений тока, А		до 30
Выходное напряжение, мВ/А	10	
Диапазон измерений частот	от 40 Гц до 70 Гц	
Изоляция	60	0 B
Клещи гибкие MFC	-150 №111.7030	
Номинальное значение тока I _{ном} , А	1500	
Диапазон измерений тока, А	от 1 до 1500	
Выходное напряжение, мВ/1000А	85	
Диапазон измерений частоты	от 40 Гц до 70 Гц	
Изоляция	1000B, CAT III	

Таблица 4		
Измеряемый параметр	Диапазон измерений	Значение
D	,	
входные напряж	кения (для всех исполнений))
Пределы допускаемой приведенной	(0,1-1,5) U _{HOM}	±0,1
погрешности измерений действующего	(*,,- / - now	
значения напряжения, %		
Пределы допускаемой погрешности	0,85 мВ £ U _{вх} . < 5 мВ	±0,01 (приведенная)
измерений действующего значения	BA BA	, (1
силы переменного тока, %	5 мВ £ U _{вх.} < 50 мВ	±1 (относительная)
	50 мВ £ U _{вх} . £ 700 мВ	±0,2 (относительная)
Пределы допускаемой абсолютной	$(0.5-1.5) \text{ U}_{\text{HOM}}$	±0,15
погрешности измерений фазового угла	(0,5 – 1,5) Оном	±0,13
напряжений, градус		
Пределы допускаемой погрешности	$U_{\rm m}^*=(0.01-0.16)U_{\rm HOM}$	±5 (относительная)
измерений гармонических		, ,
составляющих напряжения, %	$U_{\rm m}^* < 0.01 U_{\rm HOM}$	±0,05 (приведенная)
Пределы допускаемой погрешности	U_m *= $(0,01-0,16)U_{HOM}$	±5 (относительная)
измерений интергармонических	U _m *<0,01U _{HOM}	±0,05(приведенная)
составляющих напряжения, %	(0.02 20) 0/ AII /II	~
Пределы допускаемой относительной	$(0.02 - 20) \% \text{ ot } \Delta U / U$	±5
погрешности измерений фликера,%	(0.11.0) 11	0.2
Пределы допускаемой приведенной	$(0,1-1,0) \text{ U}_{\text{HOM}}$	±0,2
погрешности провала напряжения, %	(0.11.0) II	- 20
Пределы допускаемой абсолютной	$(0,1-1,0) \text{ U}_{\text{HOM}}$	±20
погрешности продолжительности		
провала напряжения, мс	(1.0 1.5) II	+0.2
Пределы допускаемой приведенной погрешности скачка напряжения, %	$(1,0-1,5) \text{ U}_{\text{HOM}}$	±0,2
Пределы допускаемой абсолютной	(1,0-1,5) U _{HOM}	±20
погрешности продолжительности	$(1,0-1,3)$ O_{HOM}	±20
скачка напряжения, мс		
Пределы допускаемой абсолютной	$(0.01 - 1.0) U_{\text{HOM}}$	±20
погрешности продолжительности	(0,01 1,0) Сном	±20
перебоя напряжения, мс		
nepecon nanpanenna, me		
E	Зходные токи	
Клещи гибк	ие MFC-150 № 111.7030	
Пределы допускаемой относительной	(1 – 1500) A	±0,5
погрешности измерений действующего		
значения силы переменного тока, %		
Пределы допускаемой абсолютной	(1 – 1500) A	±1
погрешности измерений фазового угла		
тока, градус		
İ	Ī	i

Токовые клещи для измерений малых токов. Тип МЗ. И №111.7015			
Пределы допускаемой относительной	100 мA – 10 A	±1,5	
погрешности измерений действующего	10A – 20 A	±1	
значения силы переменного тока, %	> 20 A	±0,5	
Пределы допускаемой абсолютной	100 мА – 10 А	±0,5	
погрешности измерений фазового угла	10A – 20 A	±0,5	
тока, градус	> 20 A	±0,5	
Масса и габаритные размеры			
Габаритные размеры д х ш х в, мм не	242x181x50 (PQ-Box 200)		
более	220x146x57 (PQ-Box 100)		
Масса, кг, не более	2,5 (PQ-Box 200)		
	1,7 (PQ-Box 100)		

Примечание: Um –амплитудное значение напряжения.

Условия применения:

- температура окружающего воздуха от минус 20 до 60°C;
- относительная влажность до 95 % в течение 30 дней в год при отсутствии конденсата;
- атмосферное давление от 70 до 106,7 кПа (от 537 до 800 мм рт. ст.).

Знак утверждения типа

Знак утверждения типа наносится на стенку корпуса прибора (на шильдик) в виде наклейки и на руководство по эксплуатации типографским способом.

Комплектность средства измерений

Устройство PQ-Вох 100/200 с параметрами, соответствующими спецификации	1 шт.;
Руководство по эксплуатации	1 экз.;
Паспорт	1 экз.;
Методика поверки МП 2203-0276-2014	1 экз.;
Компакт-диск (руководство по эксплуатации, ПО)	1 шт.;
USB кабель	1 шт.;
Зажим типа «Дельфин»	5 шт.;
Плавкие вставки	3 шт.;
Кейс для переноски	1 шт.;
дополнительно для PQ-Box 200:	
Адаптер питания	1 шт.;
Ethernet кабель	1 шт.

Поверка

осуществляется по документу МП 2203-0276-2014 «Анализаторы качества электрической энергии PQ-Вох модификаций PQ-Вох 100, PQ-Вох 200. Методика поверки», утвержденному ГЦИ СИ ФГУП «ВНИИМ им. Д.И. Менделеева» в январе 2015 г.

Основные средства поверки:

-установка поверочная универсальная «УППУ-МЭ» или аналогичная, со следующими основными техническими характеристиками: диапазон регулирования напряжения 1 −500 B, диапазон регулирования тока 0.005-100 A, погрешность измерения тока: \pm [0,01+0,005 |($I_{\rm H}$ /I) −1|] для $I_{\rm H}$ от 0,1 A до 100 A, \pm [0,01+0,01|($I_{\rm H}$ /I) −1|] для $I_{\rm H}$ 0,05 A, погрешность измерений напряжения \pm [0,01+0,005 |($I_{\rm H}$ /U) −1|], погрешность измерений активной мощности \pm [0,015+0,005 |($I_{\rm H}$ /P) −1|], госреестр № 57346-14.

Сведения о методиках (методах) измерений

изложены в руководствах по эксплуатации: «Анализатор качества электрической энергии PQ-Вох модификации PQ-Вох 100» и «Анализатор качества электрической энергии PQ-Вох модификации PQ-Вох 200».

Нормативные и технические документы, устанавливающие требования к анализаторам качества электрической энергии PQ-Вох модификации PQ-Вох 100; PO-Вох 200

ГОСТ 22261-94 "Средства измерений электрических и магнитных величин. Общие технические условия".

МИ 1940-88 ГСИ Государственная поверочная схема для средств измерений силы переменного электрического тока от $1\cdot 10^{-8}$ до 25 А в диапазоне частот от 20 до $1\cdot 10^6$ Гц.

ГОСТ Р 8.648-2008 ГСИ Государственная поверочная схема для средств измерений переменного электрического напряжения до $1000~\rm B$ в диапазоне частот от $1\cdot 10^{-2}$ до $2\cdot 10^9~\rm Fg$.

ГОСТ 8.551-86 ГСИ Государственный специальный эталон и государственная поверочная схема для средств измерений электрической мощности и коэффициента мощности в диапазоне частот 40-20000 Γ ц.

ГОСТ 8.655-2009 Средства измерений показателей качества электрической энергии. Общие технические требования.

ГОСТ Р 51317.4.30-2008 Электрическая энергия. Совместимость технических средств электромагнитная. Методы измерений показателей качества электрической энергии. Техническая документация фирмы-изготовителя.

Рекомендации по областям применения в сфере государственного регулирования обеспечения единства измерений

- выполнение работ по оценке соответствия продукции и иных объектов обязательным требованиям в соответствии с законодательством Российской Федерации о техническом регулировании.

Изготовитель

Фирма A. Eberle GmbH & Co. KG, Германия Адрес: Frankenstrasse 160 D-90461 Nuremberg

Phone: +49 (0)911 62 81 08 - 0, Fax: +49 (0)911 62 81 08 - 96, Fax Sales: +49 (0)911 62 81 08 - 99, E-Mail: <u>info@a-eberle.de</u>

Заявитель

ООО «ЕГЕ-ЭНЕРГАН»

191186 Санкт-Петербург, Невский пр., д.22-24,лит. А, пом.24

тел. (812) 386-64-11 e-mail: info@energan.ru

Испытательный центр

ГЦИ СИ ФГУП «ВНИИМ им. Д.И. Менделеева»,

Адрес: 190005, г. Санкт-Петербург, Московский пр., 19, тел./факс 251-76-01/113-01-14,

e-mail: info@vniim.ru

Аттестат аккредитации ГЦИ СИ ФГУП «ВНИИМ им. Д.И. Менделеева» по проведению испытаний средств измерений в целях утверждения типа № 30001-10 от 20.12.2010 г.

Заместитель Руководителя Федерального агентства по техническому регулированию и метрологии

С.С. Голубев

М.п. «____»___ 2015 г.