ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Система автоматизированная информационно-измерительная коммерческого учета электроэнергии (АИИС КУЭ) Свердловского филиала ОАО «ЭнергосбыТ Плюс»

Назначение средства измерений

Система автоматизированная информационно-измерительная коммерческого учета электроэнергии (АИИС КУЭ) Свердловского филиала ОАО «ЭнергосбыТ Плюс» (далее по тексту - АИИС КУЭ) предназначена для измерения активной и реактивной электроэнергии, потребленной за установленные интервалы времени, сбора, обработки, хранения и передачи полученной информации.

АИИС КУЭ также предназначена для сбора, накопления, обработки и хранения измерительной информации об электроэнергии (30-минутные приращения активной и реактивной электроэнергии), поступающей от сетевых систем автоматизированных информационно-измерительных коммерческого учета электроэнергии контрагентов, формирования отчетных документов и передачи информации как в центр сбора и обработки информации оптового рынка, так и в центры сбора и обработки информации прочих организаций в соответствии с действующим законодательством Российской Федерации и действующими регламентами оптового рынка электрической энергии и мощности (далее по тексту - ОРЭМ).

Описание средства измерений

АИИС КУЭ представляет собой многофункциональную, многоуровневую автоматизированную систему с централизованным управлением и распределённой функцией измерения.

АИИС КУЭ включает в себя следующие уровни:

1-ый уровень – измерительно-информационные комплексы (далее – ИИК), включает в себя трансформаторы тока (далее – ТТ) классов точности 0,2S, 0,5S, 0,5 и 1,0, трансформаторы напряжения (далее – ТН) классов точности 0,2, 0,5 и 1,0 и счетчики активной и реактивной электроэнергии типа СЭТ-4ТМ.03, EPQS и Альфа А1800 класса точности 0,2S по ГОСТ Р 52323 в части активной электроэнергии и класса точности 0,5 по ГОСТ Р 52425 в части реактивной электроэнергии и типа ЕвроАЛЬФА класса точности 0,2S по ГОСТ 30206 в части активной электроэнергии и 0,5 по ГОСТ 26035 в части реактивной электроэнергии, вторичные измерительные цепи и технические средства приема-передачи данных.

- 2-й уровень информационно-вычислительный комплексы электроустановок (далее ИВКЭ), включающие в себя устройство сбора и передачи данных (далее УСПД), и коммутационное оборудование (4 ИВКЭ).
- 3-й уровень информационно-вычислительные комплексы сетевых компаний (далее ИВК), включающие в себя сервер баз данных (БД), каналообразующую аппаратуру, УССВ GPS и программное обеспечение (далее Π O) (4 ИВК).
- 4-й уровень центр сбора и обработки информации Свердловского филиала ОАО «ЭнергосбыТ Плюс» (далее ЦСОИ), включающий в себя сервер сбора и баз данных, каналообразующую аппаратуру, УССВ GPS/ГЛОНАСС на базе УСВ-2 (Зав № 2349), автоматизированные рабочие места персонала (АРМ) и ПО «Энергосфера».

Первичные фазные токи и напряжения трансформируются измерительными трансформаторами в аналоговые сигналы низкого уровня, которые по проводным линиям связи поступают на соответствующие входы электронного счетчика электрической энергии. В счетчике мгновенные значения аналоговых сигналов преобразуют в цифровой сигнал. По

мгновенным значениям силы электрического тока и напряжения в микропроцессоре счетчика вычисляются мгновенные значения активной и полной мощности, которые усредняются за период 0,02 с. Средняя за период реактивная мощность вычисляется по средним за период значениям активной и полной мощности.

Электрическая энергия, как интеграл по времени от средней за период 0,02 с мощности, вычисляется для интервалов времени 30 минут.

Средняя активная (реактивная) электрическая мощность вычисляется по результатам измерений получасовых приращений электрической энергии. Счетчики электроэнергии обеспечены энергонезависимой памятью для хранения профиля нагрузки с 30-минутным интервалом на глубину не менее 35 суток. Цифровой сигнал с выходов счетчиков по линиям связи один раз в 30 минут поступает на входы УСПД, опрашивающее данные счетчики. В УСПД ИВКЭ осуществляется хранение измерительной информации, ее накопление и передача данных на третий уровень системы.

Далее, по запросу ИВК сетевых компаний, УСПД передает запрашиваемую информацию, с периодичностью один раз в сутки и/или по запросу, содержащую информацию о 30-минутных приращениях активной и реактивной электроэнергии, состоянии средств измерений.

В ИВК выполняется дальнейшая обработка измерительной информации: вычисление электроэнергии и мощности с учетом коэффициентов трансформации ТТ и ТН, хранение измерительной информации, формирование отчетных документов в утвержденных форматах.

АИИС КУЭ имеет систему обеспечения единого времени (далее - COEB), которая обеспечивает измерение и синхронизацию времени на всех уровнях. АИИС КУЭ оснащена УССВ, синхронизирующего собственное системное время по сигналам проверки времени, получаемым от GPS-приемника. СОЕВ имеет нормированные метрологические характеристики и обеспечивает синхронизацию времени при проведении измерений количества электроэнергии с точностью не хуже \pm 5,0 с.

Сервер сбора и баз данных ЦСОИ с периодичностью раз в сутки и/или по запросу получает от ИВК сетевых компаний третьего уровня результаты измерений, данные о состоянии средств измерений коммерческого учета электроэнергии в ХМL формате (тип документов 80020, 80030), осуществляет накопление и хранение информации в БД на глубину не менее 3,5 лет. Информационный обмен ЦСОИ с ИВК осуществляется с помощью электронной почты по выделенному каналу связи по протоколу TCP/IP.

Сервер сбора и баз данных ЦСОИ раз в сутки производит отправку сформированных отчетов в формате XML как в автоматическом, так и автоматизированном режиме (по команде оператора) по выделенному каналу связи в ИАСУ КУ ОАО «АТС» и другим заинтересованным субъектам ОРЭМ. Передача данных в ИАСУ КУ коммерческого оператора оптового рынка и другим заинтересованным субъектам ОРЭМ осуществляется с помощью электронной почты по выделенному каналу связи по протоколу TCP/IP.

Защита от несанкционированного доступа предусмотрена на всех уровнях сбора, передачи и хранения коммерческой информации и обеспечивается совокупностью технических и организационных мероприятий.

Журналы событий счетчика электроэнергии и УСПД отражают время (дата, часы, минуты) коррекции часов указанных устройств и расхождение времени в секундах, корректируемого и корректирующего устройств в момент непосредственно предшествующий корректировке.

Программное обеспечение

В составе АИИС КУЭ используется ПО «Энергосфера», в состав которого входят модули, указанные в таблице 1. ПО «Энергосфера» обеспечивает защиту программного обеспечения и измерительной информации паролями в соответствии с правами доступа. Средством защиты данных при передаче является кодирование данных, обеспечиваемое программными средствами ПО «Энергосфера».

Таблица 1 - Метрологические значимые модули ПО

таолица т - метрологические значимые модули по							
Наименование программного модуля (идентификационное наименование программного обеспечения)	Наименование файла	Номер версии программного обеспечения	Цифровой идентификатор программного обеспечения (контрольная сумма исполняемого кода)	Алгоритм вычисления цифрового идентификатора программного обеспечения			
Модуль импорта - экспорта	expimp.exe	Не ниже 6.4	55277FA614BAE00FCDA 8D65945267CE9				
Модуль ручного ввода данных	HandInput.exe	Не ниже 6.4	E2C7BBD88F67F3ABB78 1222B97DED255				
Модуль сервера опроса	PSO.exe	Не ниже 6.4	E011E2E8D24FC146E874 E6EE713DB3D0				
Модуль предотвращения сбоев	SrvWDT.exe	Не ниже 6.4	D098C0267DA9909E6054 EB98A6A10042	MD5			
Редактор расчетных схем	AdmTool.exe	Не ниже 6.4	0E84F140A399FB01C916 2681FA714E4B				
Модуль администрирова-ния системы	adcenter.exe	Не ниже 6.4	9D9940380E62BC822D29 EAB0EE10E1AB				
Модуль «АРМ Энергосфера»	ControlAge.exe	Не ниже 6.4	DD5985B2FA5995B1851 FE8AC862BC93A				

Метрологические характеристики ИИК АИИС КУЭ, указанные в таблице 2 нормированы с учетом ПО.

Защита программного обеспечения обеспечивается применением электронной цифровой подписи, разграничением прав доступа, использованием ключевого носителя. Уровень защиты – «высокий» в соответствии с Р 50.2.077-2014.

Метрологические и технические характеристики

Состав 1-ого уровня АИИС КУЭ и метрологические характеристики измерительных каналов приведены в таблице 2 Таблица 2 – Состав 1-ого уровня АИИС КУЭ и метрологические характеристики измерительных каналов

	лица 2 Состав 1 ото у		Состав 1-го и 2-го уров	1			_	огические ристики ИК
№ ИК	Наименование объекта	TT	ТН	Счётчик	УСПД		Границы интервала основной относительной погрешности измерений, $\%$ $\cos \phi = 0.87$ $\sin \phi = 0.5$	Границы интервала относительной погрешности измерений, в рабочих условиях, % $\cos \phi = 0.5 \\ \sin \phi = 0.87$
1	2	3	4	5	6	7	8	9
1	ПС 19 км 110/10 кВ ВЛ-110 кВ 19 км - Нижняя	ТФЗМ 110Б-1ХЛ1 Кл. т. 0,5 200/5 Зав. № 52715; 52718; 10482 Госреестр № 2793-88	НКФ-110-57 У1 Кл. т. 0,5 110000/√3/100/√3 Зав. № 1080870; 1080790; 1080869 Госреестр № н/д	СЭТ-4ТМ.03 Кл. т. 0,2S/0,5 Зав. № 0108070487 Госреестр № 27524-04	ЭКОМ- 3000М №01071575	активная реактивная	±1,1 ±2,3	±5,6 ±4,5
2	ПС Рыбниково 110/35/10 кВ ВЛ 35 кВ Рыбниково-Ларино	ТФН-35М Кл. т. 0,5 200/5 Зав. № 6404; 3372 Госреестр № 3690-73	3HOM-35-65 Кл. т. 0,5 35000/√3/100/√3 Зав. № 1313108; 1310912; 1310979 Госреестр № 912-70	СЭТ-4ТМ.03 Кл. т. 0,2S/0,5 Зав. № 0108070441 Госреестр № 27524-04	ЭКОМ- 3000М №01071575	активная реактивная	±1,1 ±2,3	±5,6 ±4,5

Продолжение таблицы 2

1	2	3	4	5	6	7	8	9
3	ПС Уфалей 110/35/6 кВ ВЛ-110 кВ, Малахит-1	ТФМ-110 Кл. т. 0,5 600/5 Зав. № 6884; 6885; 6888 Госреестр № 16023-97	НКФ-110-57 У1 Кл. т. 0,5 110000/√3/100/√3 Зав. № 1040726; 1040871; 1040791 Госреестр № 14205-94	СЭТ-4ТМ.03 Кл. т. 0,2S/0,5 Зав. № 0109065085 Госреестр № 27524-04	ЭКОМ-3000М №08061452	активная	±1,1 ±2,3	±5,6 ±4,5
4	ПС Уфалей 110/35/6 кВ ВЛ-110 кВ, Малахит-2	ТФМ-110 Кл. т. 0,5 600/5 Зав. № 6886; 6883; 6887 Госреестр № 16023-97	НКФ-110-83 У1 Кл. т. 0,5 110000/√3/100/√3 Зав. № 816; 544; 549 Госреестр № 1188-84	СЭТ-4ТМ.03 Кл. т. 0,2S/0,5 Зав. № 0109066023 Госреестр № 27524-04	ЭКОМ-3000М №08061452	активная	±1,1 ±2,3	±5,6 ±4,5
5	ПС Уфалей 110/35/6 кВ ВЛ-110 кВ ОВ	SB 0,8 Кл. т. 0,5 600/5 Зав. № 06041775; 06041776; 06041779 Госреестр № 20951-01	НКФ-110-57 У1 Кл. т. 0,5 110000/√3/100/√3 Зав. № 1040726; 1040871; 1040791 Госреестр № 14205-94	СЭТ-4ТМ.03 Кл. т. 0,2S/0,5 Зав. № 0106066011 Госреестр № 27524-04	ЭКОМ-3000М №08061452	активная	±1,1 ±2,3	±5,6 ±4,5
6	ПС "Сажино" 110/35/10 кВ, ВЛ-35 кВ Сажино- Усть-Икинская	ТОЛ-35 Кл. т. 0,5S 150/5 Зав. № 870; 860; 111145 Госреестр № 21256-07	НАМИ-35 УХЛ1 Кл. т. 0,5 35000/100 Зав. № 2099 Госреестр № 19813-09	СЭТ-4ТМ.03 Кл. т. 0,2S/0,5 Зав. № 0108070257 Госреестр № 27524-04	ЭКОМ-3000М № 01071575	активная	±1,1 ±2,3	±5,0 ±4,4

Продолжение таблицы 2

1	<u>2</u>	3	4	5	6	7	8	9
7	ПС Красноуфимская 220/110/35/10 кВ, ВЛ 110 кВ Романовка-1	ТФЗМ 110Б-1У1 Кл. т. 0,5 600/5 Зав. № 25684; 25644; 25681 Госреестр № 2793-71	DDB-123 Кл. т. 0,2 110000/√3/100/√3 Зав. № 12003401/1, 12003401/2, 12003401/3 Госреестр № 44355-10	EPQS 111.21.18LL Кл. т. 0,2S/0,5 Зав. № 471673 Госреестр № 25971-06	ЭКОМ-3000М № 05082115	активная реактивная	±0,9 ±2,0	±5,5 ±4,4
8	ПС Красноуфимская 220/110/35/10 кВ, ВЛ 110 кВ Романовка-2	ТФЗМ 110Б-1У1 Кл. т. 0,5 600/5 Зав. № 25663; 25623; 25665 Госреестр № 2793-71	НКФ-110-57 У1 Кл. т. 0,5 110000/√3/100/√3 Зав. № 942409; 942407; 942419 Госреестр № н/д	EPQS 111.21.18LL Кл. т. 0,2S/0,5 Зав. № 472396 Госреестр № 25971-06	ЭКОМ-3000М № 05082115	активная	±1,1 ±2,3	±5,6 ±4,5
9	ПС Красноуфимская 220/110/35/10 кВ, ОВ 110 кВ	ТВ-110/20 ХЛ Кл. т. 1,0 1000/5 Зав. № 8704-А; 8704-В; 8704-С Госреестр № 4462-74	DDB-123 Кл. т. 0,2 110000/√3/100/√3 Зав. № 12003401/1, 12003401/2, 12003401/3 Госреестр № 44355-10	EPQS 111.21.18LL Кл. т. 0,2S/0,5 Зав. № 471790 Госреестр № 25971-06	ЭКОМ-3000М № 05082115	активная реактивная	±1,6 ±3,7	±10,6 ±6,0
10	ПС Промысла 110/35/6 кВ. Ввод ВЛ 110 кВ Промысла- Качканар	ТФН-110 Кл. т. 0,5 300/5 Зав. № 603; 602 Госреестр № 652-50	НКФ-110 Кл. т. 1,0 110000/√3/100/√3 Зав. № 892120; 901645; 901616 Госреестр № 922-54	EA02RAL-P3B-4 Кл. т. 0,2S/0,5 Зав. № 01129446 Госреестр № 16666-97	RTU-325 № 001447	активная реактивная	±1,6 ±3,1	±6,0 ±3,7

Продолжение таблицы 2

1	2	3	4	5	6	7	8	9
11	ПС Европейская 110/6 кВ. Ввод ВЛ 110 кВ Чекмень	ТОГФ-110 Кл. т. 0,2S 300/1 Зав. № 381; 380; 379 Госреестр № 44640-11	НАМИ-110 УХЛ1 Кл. т. 0,2 110000/√3/100/√3 Зав. № 7327; 7700; 7511 Госреестр № 24218-08	A1802RALQ- P4GB-DW-4 Кл. т. 0,2S/0,5 Зав. № 01241348 Госреестр № 31857-11	RTU-325 № 001447	активная	±0,5 ±1,1	±2,4 ±3,9
12	ПС Глухарь 110/10 кВ, ВЛ 110 кВ Глухарь-Шамары- цепь 1	ТГФМ-110 II* Кл. т. 0,2S 300/1 Зав. № 7105; 7096; 6833 Госреестр № 36672-08	НАМИ-110 УХЛ1 Кл. т. 0,2 110000/√3/100/√3 Зав. № 7060; 6895; 6904 Госреестр № 24218-08	A1802RALQ- P4GB-DW-4 Кл. т. 0,2S/0,5 Зав. № 01237991 Госреестр № 31857-11	RTU-325 № 001447	активная реактивная	±0,5 ±1,1	±2,4 ±3,9
13	ПС Глухарь 110/10 кВ, ВЛ 110 кВ Глухарь- Платоново	ТГФМ-110 II* Кл. т. 0,2S 200/1 Зав. № 7017; 7018; 7020 Госреестр № 36672-08	НАМИ-110 УХЛ1 Кл. т. 0,2 110000/√3/100/√3 Зав. № 7060; 6895; 6904 Госреестр № 24218-08	A1802RALQ- P4GB-DW-4 Кл. т. 0,2S/0,5 Зав. № 01225460 Госреестр № 31857-11	RTU-325 № 001447	активная	±0,5 ±1,1	±2,4 ±3,9

Примечания:

- 1. Характеристики погрешности ИК даны для измерения электроэнергии и средней мощности (получасовая);
- 2. В качестве характеристик относительной погрешности указаны границы интервала, соответствующие вероятности 0,95;
 - 3. Нормальные условия:
 - параметры питающей сети: напряжение (220 ± 4.4) B; частота (50 ± 0.5) Гц;
- параметры сети: диапазон напряжения (0.98-1.02)Uн; диапазон силы тока (1.0-1.2)Iн; коэффициент мощности $\cos \phi (\sin \phi) 0.87(0.5)$; частота (50 ± 0.5) Γ ц;
- температура окружающего воздуха: TT от 15° C до 35° C; TH от 15° C до 35° C; счетчиков: от 21° C до 25° C; УСПД от 15° C до 25° C;
 - относительная влажность воздуха (70 ± 5) %;
 - атмосферное давление (100 \pm 4) кПа.
 - 4. Рабочие условия эксплуатации:

для ТТ и ТН:

- параметры сети: диапазон первичного напряжения (0,9-1,1)Uн1; диапазон силы первичного тока (0,01(0,02)-1,2)Iн1; диапазон коэффициента мощности $\cos \varphi (\sin \varphi) 0,5-1,0(0,87-0,5)$; частота $(50\pm 0,5)$ Γ Ц;
 - температура окружающего воздуха от минус 40 °C до 70 °C;
 - относительная влажность воздуха (70 ± 5) %;
 - атмосферное давление $(100 \pm 4) \ \kappa \Pi a$.

Для электросчетчиков:

- параметры сети: диапазон вторичного напряжения (0.9-1.1)Uн2; диапазон силы вторичного тока (0.01-1.2)Iн2; диапазон коэффициента мощности $\cos \phi (\sin \phi) \ 0.5-1.0 \ (0.6-0.87)$; частота $(50\pm0.5)\ \Gamma$ ц;
 - магнитная индукция внешнего происхождения 0,5 мТл;
 - температура окружающего воздуха от минус 40°C до 40°C;
 - относительная влажность воздуха (40 60) %;
 - атмосферное давление (100 ± 4) кПа.

Для аппаратуры передачи и обработки данных:

- параметры питающей сети: напряжение (220 ± 10) B; частота (50 ± 1) Γ ц;
- температура окружающего воздуха от 10 °C до 30 °C;
- относительная влажность воздуха (70 ± 5) %;
- атмосферное давление (100 ± 4) кПа.
- 5. Допускается замена измерительных трансформаторов и счетчиков на аналогичные утвержденных типов с метрологическими характеристиками не хуже, чем у перечисленных в Таблице 2, УСПД на однотипный утвержденного типа.

Параметры надежности применяемых в АИИС КУЭ компонентов:

- в качестве показателей надежности измерительных трансформаторов тока в соответствии с ГОСТ 7746-2001, определены средний срок службы и средняя наработка на отказ;

Параметры надежности применяемых в АИИС КУЭ компонентов:

- в качестве показателей надежности измерительных трансформаторов тока и измерительных трансформаторов напряжения в соответствии с ГОСТ 7746-2001 и ГОСТ 1983-2001 соответственно, определены средний срок службы и средняя наработка на отказ;
- электросчётчик СЭТ-4ТМ.03 среднее время наработки на отказ не менее T = 90~000 ч, среднее время восстановления работоспособности t = 2 ч;
 - электросчётчик EPQS среднее время наработки на отказ не менее T = 70 000 ч;
 - электросчётчик Альфа А1800 среднее время наработки на отказ не менее

- $T = 120\ 000\$ ч, среднее время восстановления работоспособности tв = 2 ч;
 - электросчётчик ЕвроАЛЬФА среднее время наработки на отказ не менее Т = 50 000 ч;
- Сервер БД среднее время наработки на отказ не менее $T=100\ 000\$ ч, среднее время восстановления работоспособности $t = 1\$ ч.
 - УСПД RTU-325 среднее время наработки на отказ не менее 40 000 ч;
 - УСПД ЭКОМ-3000М среднее время наработки на отказ не менее 75 000 ч;
 - УСВ-2 среднее время наработки на отказ не менее 35 000 ч.

Надежность системных решений:

- защита от кратковременных сбоев питания сервера с помощью источника бесперебойного питания;
 - резервный сервер с установленным специализированным ПО «Энергосфера»;
- резервирование каналов связи: информация о результатах измерений может передаваться в организации—участники оптового рынка электроэнергии с помощью электронной почты и сотовой связи.

В журналах событий фиксируются факты:

- журнал счётчика:
 - параметрирования;
 - пропадания напряжения;
 - коррекции времени в счетчике.
- журнал событий ИВК:
 - даты начала регистрации измерений;
 - перерывы электропитания;
 - программные и аппаратные перезапуски;
 - установка и корректировка времени;
 - переход на летнее/зимнее время;
 - нарушение защиты ИВК;
- отсутствие/довосстановление данных с указанием точки измерений и соответствующего интервала времени.

Защищённость применяемых компонентов:

- механическая защита от несанкционированного доступа и пломбирование:
 - электросчётчика;
 - промежуточных клеммников вторичных цепей напряжения;
 - испытательной коробки;
 - сервера;
- защита информации на программном уровне:
 - результатов измерений при передаче информации (возможность использования цифровой подписи);
 - установка пароля на счетчик;
 - установка пароля на сервере БД.

Глубина хранения информации:

- электросчетчик тридцатиминутный профиль нагрузки в двух направлениях при отключении питания: для счетчиков типа СЭТ-4ТМ.03, Альфа А1800, ЕвроАЛЬФА не менее 30 лет, EPQS не менее 32 лет;
- ИВКЭ результаты измерений, состояние объектов и средств измерений не менее 35 суток;
- ИВК результаты измерений, состояние объектов и средств измерений не менее $3.5\,\mathrm{лет}.$

Знак утверждения типа

Знак утверждения типа наносится на титульные листы эксплуатационной документации на систему автоматизированную информационно-измерительную коммерческого учёта электроэнергии (АИИС КУЭ) Свердловского филиала ОАО «ЭнергосбыТ Плюс» типографским способом.

Комплектность средства измерений

В комплект поставки входит техническая документация на систему и на комплектующие средства измерений.

Комплектность АИИС КУЭ Свердловского филиала ОАО «ЭнергосбыТ Плюс» представлена в таблице 3.

Таблица 3 - Комплектность АИИС КУЭ Свердловского филиала ОАО «ЭнергосбыТ Плюс»

Наименование	Кол-во, шт.
Трансформаторы тока климатического исполнения ТФЗМ 110Б-ІХЛ1	3
Трансформаторы тока измерительные ТФЗМ 110Б-1У1	6
Трансформаторы тока ТФН-35М	2
Трансформаторы тока ТФМ-110	6
Трансформаторы тока встроенные SB 0,8	3
Трансформаторы тока ТВ-110/20 ХЛ	3
Трансформаторы тока ТОЛ-35	3
Трансформаторы тока типа ТФН-110	2
Трансформаторы тока серии ТОГФ-110	3
Трансформаторы тока ТГФМ-110 II*	6
Трансформатор напряжения типа ЗНОМ-35-65	3
Трансформаторы напряжения типа НКФ-110-57 У1	9
Трансформаторы напряжения НАМИ-35 УХЛ1	1
Трансформаторы напряжения антирезонансные НАМИ-110 УХЛ1	6
Трансформаторы напряжения НКФ-110-83 У1	3
Трансформаторы напряжения классов 1 и 3 с заводским обозначением НКФ-110	3
Трансформаторы напряжения емкостные DDB-123	3
Счётчик электрической энергии многофцикциональные СЭТ-4ТМ.03	6
Счётчики электрической энергии многофункциональные EPQS	3
Счётчики электроэнергии многофункциональные типа ЕвроАЛЬФА	1
Счётчики электрической энергии трехфазные многофункциональные Альфа A1800	3
УСПД ЭКОМ-3000М	3
УСПД RTU-325	1
VCB-2	1
Программное обеспечение ПК «Энергосфера»	1
Методика поверки	1
Паспорт-формуляр	1

Поверка

Осуществляется по документу МП 60644-15 «Система автоматизированная информационно-измерительная коммерческого учета электроэнергии (АИИС КУЭ) Свердловского филиала ОАО «ЭнергосбыТ Плюс». Методика поверки», утвержденному Φ ГУП «ВНИИМС» в марте 2015 г.

Средства поверки – по НД на измерительные компоненты:

- · Трансформаторы тока в соответствии с ГОСТ 8.217-2003 «ГСИ. Трансформаторы тока. Методика поверки»;
- Трансформаторы напряжения в соответствии с ГОСТ 8.216-88 «ГСИ. Трансформаторы напряжения. Методика поверки» и/или по МИ 2845-2003 «ГСИ. Измерительные трансформаторы напряжения 6√3...35 кВ. Методика проверки на месте эксплуатации»;
- Счетчики электрической энергии многофункциональные СЭТ-4ТМ.03 в соответствии с методикой поверки ИЛГШ.411152.124 РЭ1, являющейся приложением к руководству по эксплуатации ИЛГШ.411152.124 РЭ. Методика поверки согласована с руководителем ГЦИ СИ ФГУ «Нижегородский ЦСМ» 10 сентября 2004 г.;
- · Счетчики электрической энергии многофункциональные EPQS по документу: «Счетчики электрической энергии многофункциональные EPQS. Методика поверки РМ 1039597-26:2002», утвержденному Государственной службой метрологии Литовской Республики;
- Счетчики электрической энергиитрехфазные многофункциональные ЕвроАЛЬФА по методике поверки с помощью установок МК6800, МК 6801 для счетчиков классов точности 0,2 и 0,5 и установок ЦУ 6800 для счетчиков классов точности 1,0 и 2,0;
- · Счетчики электрической энергии многофункциональные Альфа A1800 по документу «Счетчики электрической энергии трехфазные многофункциональные Альфа A1800. Методика поверки ДЯИМ.411152.018 МП», утвержденному ГЦИ СИ ФГУП «ВНИИМС» в 2011 г;
- УСПД ЭКОМ-3000М в соответствии с методикой «ГСИ. Комплекс программно-технический измерительный ЭКОМ-3000. Методика поверки. ПБКМ.421459.003 МП», утвержденной ГЦИ СИ ФГУП «ВНИИМС» в мае 2009 г:
- · УСПД RTU-325 по документу ДЯИМ.466.453.005МП «Устройства сбора и передачи данных RTU-325 и RTU-325L. Методика поверки», утвержденному ГЦИ СИ ФГУП «ВНИИМС» в 2008 г;
- радиочасы МИР РЧ-01, принимающие сигналы спутниковой навигационной системы Global Positioning System (GPS), номер в Государственном реестре средств измерений 27008-04,
- · переносной компьютер с ПО и оптический преобразователь для работы со счетчиками АИИС КУЭ и с ПО для работы с радиочасами МИР РЧ-01,
- термогигрометр CENTER (мод.314): диапазон измерений температуры от минус 20 до плюс 60 °C, дискретность 0,1 °C; диапазон измерений относительной влажности от 10 до 100 %, дискретность 0,1 %.

Сведения о методиках (методах) измерений

Метод измерений изложен в документе «Система автоматизированная информационноизмерительная коммерческого учёта электрической энергии Свердловского филиала ОАО «ЭнергосбыТ Плюс». Формуляр» 04622448.01.001 ФО. Нормативные документы, устанавливающие требования к системе автоматизированной информационно-измерительной коммерческого учета электроэнергии (АИИС КУЭ) Свердловского филиала ОАО «ЭнергосбыТ Плюс»

ГОСТ Р 8.596-2002 «ГСИ. Метрологическое обеспечение измерительных систем. Основные

положения».

ГОСТ 22261-94 «Средства измерений электрических и магнитных величин. Общие

технические условия».

ГОСТ 34.601-90 «Информационная технология. Комплекс стандартов на автоматизи-

рованные системы. Автоматизированные системы. Стадии создания».

04622448.01.001 ФО «Система Автоматизированная информационно-измерительная

коммерческого учёта электрической энергии Свердловского филиала

ОАО «ЭнергосбыТ Плюс». Формуляр»

Рекомендации по областям применения в сфере государственного регулирования обеспечения единства измерений

– при осуществлении торговли.

Изготовитель

Свердловский филиал ОАО «ЭнергосбыТ Плюс»

Юридический адрес:

143421, Московская область, Красногорский район, 26 км. Автодороги «Балтия», бизнес-центр «Рига-Ленд», строение № 3

Почтовый адрес:

620075, г. Екатеринбург, ул. Кузнечная, 92, ГСП-086

Тел./факс: (343) 355-83-59 / (343) 355-03-06

hotline.sesb@ies-holding.com

Испытательный центр

Федеральное государственное унитарное предприятие «Всероссийский научноисследовательский институт метрологической службы» (ФГУП «ВНИИМС»)

Юридический адрес:

119361, Москва, ул. Озерная, д. 46

Тел./факс: +7 (495) 437-55-77 / 437-56-66;

E-mail: office@vniims.ru, www.vniims.ru

Аттестат аккредитации Φ ГУП «ВНИИМС» по проведению испытаний средств измерений в целях утверждения типа № 30004-13 от 26.07.2013 г.

Заместитель Руководителя Федерального агентства по техническому регулированию и метрологии

С.С. Голубев

М.п. «___»_____2015 г.