ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Устройства многофункциональные depRTU

Назначение средства измерений

Устройства многофункциональные depRTU (далее по тексту – устройства) предназначены для:

- измерений параметров (частоты, напряжения, силы тока, мощности, углов фазового сдвига) трехпроводных и четырехпроводных электрических сетей, и систем электроснабжения переменного трехфазного тока с номинальной частотой 50 Гц;
- измерений и учета активной и реактивной электрической энергии в трехфазных сетях переменного тока в соответствии с метрологическими требованиями ГОСТ 31819.22-2012 для счетчиков активной энергии класса точности 0,2S, 0,5S и ГОСТ 31819.23-2012 для счетчиков реактивной энергии класса точности 1;
 - измерений и учета электрической энергии и мощности постоянного тока;
- измерений показателей качества электроэнергии (далее по тексту ПКЭ) в соответствии с метрологическими требованиями ГОСТ 30804.4.30-2013, ГОСТ 30804.4.7-2013, ГОСТ 32144-2013 и их статистической обработки;
- измерений унифицированных сигналов напряжения и силы постоянного тока, электрического сопротивления.

Описание средства измерений

Принцип действия устройств заключается в аналогово-цифровом и цифро-аналоговом преобразовании входных сигналов с последующей обработкой встроенными микропроцессорами.

Устройства являются многофункциональными изделиями и предназначены для использования в составе разнообразных автоматизированных систем, в том числе систем, построенных на базе информационного, измерительного и управляющего комплекса «ДЕКОНТ», на энергообъектах среднего и высокого напряжения.

Устройства имеют модульную проектно-компонуемую архитектуру и состоят из функциональных модулей (модули электроизмерительные, модули ввода-вывода, процессорные модули, модули питания и др.).

Устройства могут применяться в качестве:

- устройства связи с объектом (УСО);
- · удаленного терминала (RTU);
- контроллера ячейки КРУ;
- контроллера присоединения;
- контроллера энергообъекта;
- концентратора данных и преобразователя протоколов;
- коммуникационного шлюза объекта;
- регистратора аварийных событий;
- прибора для измерения показателей качества электроэнергии;
- прибора учета электроэнергии;
- устройства релейной защиты и автоматики;
- устройств сопряжения и др.

Устройства могут применяться в составе автоматизированных систем управления электрических подстанций среднего и высокого напряжения в качестве источников технологической информации для различных интеллектуальных микропроцессорных приборов,

подключаемых к шине процесса (прием и выдача цифрового потока по пункту 2.22 ТУ 4252-501-86507412-2014 «Устройства многофункциональные depRTU. Технические условия» (далее по тексту – ТУ) и шине подстанции (прием и выдача цифрового потока по пункту ТУ № 2.22).

Интерфейсы связи depRTU предназначены для приема-передачи данных по различным средам передачи устройствам верхнего уровня (например, программируемые логические контроллеры, компьютерные серверы, устройства отображения информации и др.).

Устройства depRTU поддерживают следующие протоколы обмена данными:

- протоколы цифровой подстанции (цифровые потоки по пункту ТУ № 2.22);
- протоколы «бесшовного резервирования сети высокой доступности» HSR и PRP;
- протоколы ГОСТ Р МЭК 60870-5-101-2006, ГОСТ Р МЭК 60870-5-104-2004, Modbus-TCP, Modbus-RTU и другие.

Синхронизация времени в устройствах осуществляется от системы GPS или ГЛОНАСС, а также по входному сигналу 1PPS и средствами протоколов NTP, SNTP, PTP.

В устройствах также имеется выход для синхронизации по 1PPS.

Устройства выпускаются в модификациях, определяемых:

- конструктивным исполнением;
- составом установленных модулей электроизмерительных и ввода-вывода;
- составом процессорных, коммуникационных модулей и модулей питания;
- составом загруженного (встроенного) ПО.

Исполнение и комбинация установленных модулей, интерфейсов связи и функционала устройства кодируется цифробуквенными обозначениями, как указано в таблице 1.

Типы каналов ввода-вывода и их метрологические характеристики приведены в таблинах 3-14.

Таблица 1 - Формирование строки обозначения устройства depRTU.

таолица т - Формирование строки обозначения устроиства церкто.				
depRTU-A-B1Bx-[]-Y1Yx				
Конструктивное исполнение				
		крейтовое исполнение (IP20 по ГОСТ 14254-96) высотой не		
	-	более 125 см.		
	Н	крейтовое исполнение (IP20 по ГОСТ 14254-96) высотой не		
A	П	более 180 см.		
	ПП	полевое исполнение (IP65 по ГОСТ 14254-96)		
	LT	исполнение LT (IP20 по ГОСТ 14254-96)		
	EM	исполнение EM (IP51 по ГОСТ 14254-96)		
		Электрические измерения		
	nMIxy	измерение тока (прямой ввод), где у=1 при Іном=1 А, у –		
	IIIVIIXY	отсутствует при Іном=5 А		
	nMUxy	измерение напряжения (прямой ввод), где у=230 при		
B1 Bx	IIIVIOXy	Uном=230 B, у – отсутствует при Uном=57,7 B		
	где n - количест	во измерительных каналов от 0 до 1000,		
	х — заглавная л	патинская буква, обозначающая тип измерительного канала		
	согласно таблиц	e 6.		
Унифицированный ввод-вывод				
	nAIx	унифицированные сигналы аналогового ввода		
	nAOx	унифицированные сигналы аналогового вывода		
C1 Cx	nDIx	унифицированные сигналы дискретного ввода		
	nDOx	унифицированные сигналы дискретного вывода		
	nCIx	унифицированные сигналы счетного ввода		

продолжение таолицы 1 depRTU-A-B1Bx-[]-Y1Yx					
		во измерительных каналов от 0 до 1000,			
	х – заглавная латинская буква, обозначающая тип измерительного канала				
	согласно таблицам 12-14, а также таблицам, приведенным в РЭ.				
	Типы и обозначения унифицированных дискретных вводов (DIx) и выводов				
	(DOх) приведены в РЭ на устройства.				
		асчетные функции устройства			
		учет электроэнергии переменного тока, х – заглавная			
	Wx	латинская буква, обозначающая исполнение согласно			
		таблице 7.			
		учет электроэнергии постоянного тока, х – заглавная			
	Ex	латинская буква, обозначающая исполнение согласно			
		таблице 8.			
	Q	измерение показателей качества электроэнергии (ПКЭ)			
D1 Dx	R	регистрация аварийных событий (РАС)			
		SV-поток, где $xxx = 80$ либо 256; Y_1 , Y_2 , Y_3 , Y_4 – заглавные			
	$SVxxxY_1Y_2Y_3Y_4$	латинские буквы, обозначающие исполнение устройства по			
		точности измерения, в соответствии с таблицами 10, 11			
	C1	функция автоматики управления выключателем (АУВ)			
	C2	функция релейной защиты и автоматики (РЗА)			
	C3	функция определения места повреждения (ОМП)			
		и - обозначения в соответствии с РЭ на устройства			
		ммуникационные возможности			
		интерфейсы RS-485, RS-422, RS-232, xxx = 485, 422, 232			
	nRSxxx	соответственно			
	nETX	интерфейс 10/100Base-TX			
	nEFX	интерфейс 10/100Base-FX			
E1 Ex		о каналов от 0 до 1000.			
		Интерфейсы 1000Base-TX, 1000Base-FX, USB-device, USB-host, USB Security			
		key, HDMI, LVDS, GSM, GPS, вход 1PPS, выход 1PPS и другие			
	коммуникационные возможности - обозначения в соответствии с РЭ на				
	устройства				
	1 3 1	Модули электропитания			
	nU230	первичное питание 230 В постоянного тока			
	nU24	первичное питание 24 В постоянного тока			
F1 Fx	где п - количество	о модулей электропитания от 0 до 1000			
		ектропитания – обозначения в соответствии с РЭ на			
	устройства	1			
		зможности центрального процессора устройства			
,	Fn	увеличенный флэш, где «n» - размер в гигабайтах			
		панель индикации и управления, х – цифра от 1 до 9, у –			
C1 C	Pxy	заглавная латинская буква, обозначающая исполнение в			
G1 Gx		соответствии с РЭ на устройства			
	и другие дополни	тельные возможности – обозначения в соответствии с РЭ на			
	устройства				
До	1 4 1	иожности встроенного программного обеспечения			

	depRTU-A-B1Bx-[]-Y1Yx			
H1 Hx поддержка протоколов передачи МЭК-60870-5-101 / МЭК-60870-5-104, Modbus RTU / Modbus TCP, IEC 61850-9-2 / IEC 61850-9-2 LE, IEC 61850-8-1 server, IEC 62439 (PRP / HSR), IEEE 1588v2 (PTP) и др обозначения в соответствии с руководством по эксплуатации на устройства				
Y1 Yx	другие возможности - обозначения в соответствии с руководством по эксплуатации на устройства			

Устройства выпускаются в следующих типах конструктивов:

- полевое исполнение;
- крейтовое исполнение;
- · исполнение LT (локальный терминал);
- исполнение ЕМ.

Устройство крейтового исполнения состоит из модулей, размещаемых в конструктиве. Модули устанавливаются по направляющим салазкам в корпус крейта и крепятся при помощи винтов. Модули соединены между собой и запитаны посредством встроенной объединительной платы.

Полевое исполнение конструктивно выполнено в металлическом прямоугольном корпусе. Конструкция обеспечивает установку в открытом распределительном устройстве с использованием штатных конструктивных элементов.

Примеры расшифровки строки обозначения устройства.

- 1) Устройство многофункциональное depRTU 4MIA 4MIK 48DIC 2DOA 28DOC 2EFX устройство крейтового исполнения, имеющее следующие особенности:
- 4 канала измерения переменного тока (диапазон измерений и пределы допускаемых погрешностей в соответствии с обозначением А по таблице 6);
- 4 канала измерения переменного тока (диапазон измерений и пределы допускаемых погрешностей в соответствии с обозначением К по таблице 6);
- 48 каналов дискретного ввода (характеристики в соответствии с РЭ для обозначения C);
- 2 канала дискретного вывода (характеристики в соответствии с РЭ для обозначения A);
- 28 каналов дискретного вывода (характеристики в соответствии с РЭ для обозначения A);
 - 2 сетевых интерфейса 10/100Base-FX.
- 2) Устройство многофункциональное depRTU ПП 16 DIK 2DOA 2EFX U230 устройство полевого исполнения, имеющее следующие особенности:
- 16 каналов дискретного ввода (характеристики в соответствии с РЭ для обозначения K);
- 2 канала дискретного вывода (характеристики в соответствии с РЭ для обозначения A);
 - 2 сетевых интерфейса 10/100Base-FX;
 - номинальное напряжение питания 230 В постоянного тока.

Внешний вид конструктивных исполнений устройств приведен на рисунках 1-5.

Защита от несанкционированного доступа к измерительным компонентам и метрологически значимому ПО устройств обеспечивается пломбированием защитными голографическими наклейками. При вскрытии корпуса устройства на его поверхности остаются неудаляемые следы.

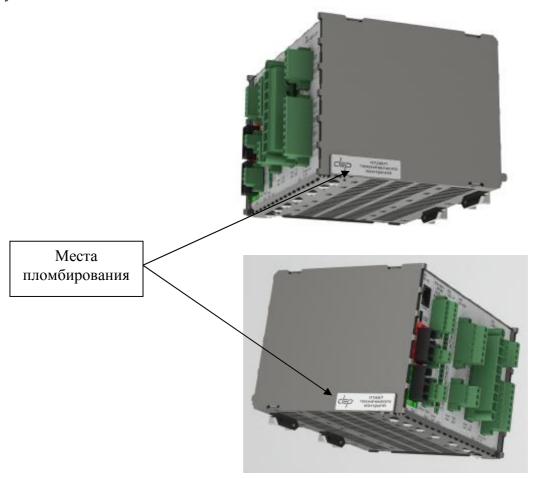


Рисунок 1 – Внешний вид крейтового исполнения устройств depRTU.

Рисунок 2 – Внешний вид полевого исполнения устройств depRTU-ПП.

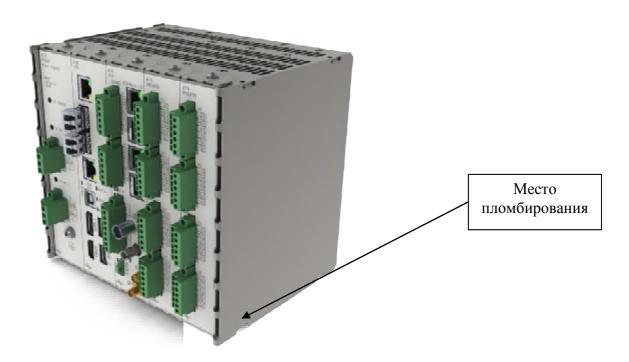


Рисунок 3 — Внешний вид крейтового исполнения устройств depRTU-H.

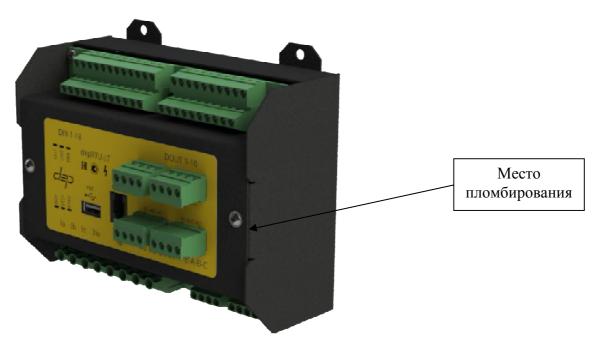


Рисунок 4 — Внешний вид исполнения устройств depRTU-LT.

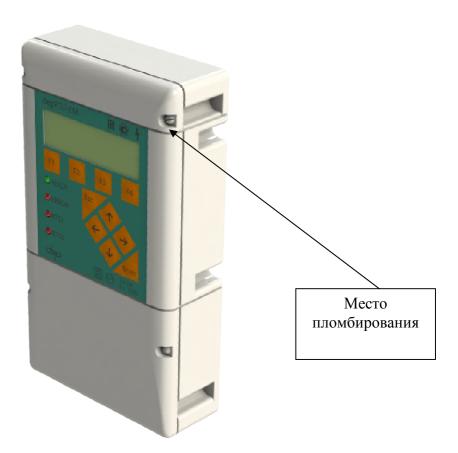


Рисунок 5 – Внешний вид исполнения устройств depRTU-EM.

Программное обеспечение

Программное обеспечение (далее - Π O) устройств состоит из встроенного в устройства и внешнего, функционирующего на внешних программно-аппаратных платформах.

Встроенное ΠO — Программное обеспечение устройств многофункциональных depRTU «depRTU» - заносится во флэш-память микропроцессора устройства при выпуске из производства и не может быть изменено пользователем.

Встроенное ПО является метрологически значимым.

Идентификационные данные ПО приведены в таблице 2.

Таблица 2 - Идентификационные данные программного обеспечения.

			Цифровой	Алгоритм
Наименование программного обеспечения	Идентификационное наименование программного обеспечения	Номер версии (идентификацион ный номер программного обеспечения)	идентификатор программного обеспечения (контрольная сумма исполняемого кода)	вычисления цифрового идентификат ора программног о
Программное обеспечение устройств многофункциональных depRTU	depRTU	Не ниже 1.10	-	-

Наименование программного обеспечения	Идентификационное наименование программного обеспечения	Номер версии (идентификацион ный номер программного обеспечения)	Цифровой идентификатор программного обеспечения (контрольная сумма исполняемого кода)	Алгоритм вычисления цифрового идентификат ора программног о обеспечения
Программное обеспечение для проверки и калибровки сигналов SV-потоков МЭК 61850-9-2LE «depCalibrSV»	depCalibrSV	Не ниже 0.0.1.0	-	ı

Влияние встроенного программного обеспечения учтено при нормировании метрологических характеристик устройств. Устройства защиту встроенного имеют программного обеспечения непреднамеренных преднамеренных изменений, OT И реализованную изготовителем на этапе производства путем установки системы защиты микроконтроллеров от чтения и записи.

Уровень защиты встроенного программного обеспечения – «Высокий» в соответствии с правилами Р 50.2.077-2014.

В качестве внешнего ΠO в устройствах может использоваться ΠO SCADA SyTrack и Программное обеспечение для калибровки сигналов SV-потоков MЭК 61850-9-2LE «depCalibrSV».

Программное обеспечение для проверки и калибровки сигналов SV-потоков MЭК 61850-9-2LE «depCalibrSV» сертифицировано ФГУП «ВНИИМС» и внесено в реестр системы добровольной сертификации программного обеспечения средств измерений ФГУП «ВНИИМС» (сертификат соответствия № ТП 027-15 от 20.01.2015 г.).

Уровень защиты внешнего программного обеспечения «depCalibrSV» - «Средний» в соответствии с правилами Р 50.2.077-2014.

ПО SCADA SyTrack не является метрологически значимым и включает в себя набор инструментальных и исполнительных модулей.

Уровень защиты внешнего ПО SCADA SyTrack – «Высокий» в соответствии с правилами.

Метрологические и технические характеристики

Метрологические и технические характеристики приведены в таблицах 3 - 15.

Таблица 3 - Общие метрологические характеристики

Наименование характеристики	Значение
Номинальное среднеквадратическое значение силы переменного тока $I_{\text{ном}}$ частотой от 42,5 до 57,5 Γ ц	1 A; 5 A
Номинальное среднеквадратическое значение фазного/междуфазного напряжения переменного тока $U_{\text{ном}}$ частотой от 42,5 до 57,5 Γ ц	$(100/\sqrt{3})/100 \text{ B};$ $230/(230 \cdot \sqrt{3}) \text{ B}.$
Нормальные условия применения:	
- температура окружающего воздуха	20 ± 5 °C
- относительная влажность воздуха	от 30 до 80 %

Наименование характеристики	Значение
Рабочие условия применения Температура окружающего воздуха: - для устройств без подсистемы подогрева/термостатирования;	от минус 40 до 70°C
- для устройств полевого исполнения (depRTU-ПП-хх) с подсистемой подогрева/термостатирования	от минус 70 до 55 °C
Относительная влажность воздуха, без образования конденсата	до 98 % при температуре 30 °C

Таблица 4 - Метрологические характеристики измерения интервалов времени (хода часов) при отсутствии синхронизации по ГЛОНАСС/GPS с «Национальной шкалой

координированного времени Российской Федерации UTC (SU)»

Пределы допускаемой основной погрешности	Пределы допускаемой погрешности при температуре от 0 до 50 °C	Пределы допускаемой погрешности при температуре от минус 40 до 0 °C	Пределы допускаемой погрешности при температуре от 50 до 70°C
± 1 с/сутки	± 2 с/сутки	± 4 с/сутки	± 4 с/сутки

Таблица 5 - Метрологические характеристики измерения времени при синхронизации с помощью ГЛОНАСС/GPS-приемника, по Ethernet посредством протоколов NTP, SNTP, PTP; по входному сигналу 1PPS

Energiesis villianis 1112				
Способ, по которому осуществляется синхронизация	Пределы допускаемой погрешности измерения текущего времени при синхронизации, не более, мкс			
Протоколы NTP, SNTP	± 100			
Протокол РТР	± 1			
Входной сигнал 1PPS	± 1			

В таблицах ниже приведены кодовые символы для составления строки обозначения устройств, определяющие типы каналов и их метрологические характеристики.

Таблица 6 - Метрологические характеристики при измерении параметров

электроэнергии переменного тока (MIx / MUx).

Обозна	чение	Измеряемый параметр	Диапазон измерений	Пределы допускаемой основной погрешности Абсолютной Δ, Относительной δ, %, Приведённой g*, %
	A	Среднеквадратическое значение силы переменного тока, А	от 0,01 до 1,5 І _{ном}	$\pm 0,001 \cdot I_{\text{HOM}} (\Delta)$
MI	В	Среднеквадратическое значение силы переменного тока, А	от 0,01 до 1,5 І _{ном}	± 0,1 (d)

продолжение таолицы о				
Обознач	чение	Измеряемый параметр	Диапазон измерений	Пределы допускаемой основной погрешности Абсолютной Δ , Относительной δ , %, Приведённой g^* , %
	С	Среднеквадратическое значение силы переменного тока, А	от 0,01 до 1,5 І _{ном}	$\pm~0.002 \cdot I_{\scriptscriptstyle { m HOM}}(\Delta)$
	D	Среднеквадратическое значение силы переменного тока, А	от 0,01 до 1,5 І _{ном}	± 0,2 (d)
	Е	Среднеквадратическое значение силы переменного тока, А	от 0,01 до 1,5 І _{ном}	$\pm~0.005\cdot I_{\scriptscriptstyle { m HOM}}(\Delta)$
	F	Среднеквадратическое значение силы переменного тока, А	от 0,01 до 1,5 І _{ном}	± 0,5 (d)
MI	G	Среднеквадратическое значение силы переменного тока, А	от 0,01 до 1,5 І _{ном}	$\pm0,\!01\!\cdot\! I_{\scriptscriptstyle HOM}(\Delta)$
IVII	Н	Среднеквадратическое значение силы переменного тока, А	от 0,01 до 1,5 І _{ном}	± 1,0 (d)
	K	Среднеквадратическое значение силы переменного тока, А	от 0,01 до 2 I _{ном} от 2 до 40 I _{ном}	$\pm 0,\!001 \cdot I_{\text{\tiny HOM}}(\Delta) \\ \pm 1,\!5 \text{ (d)}$
	L	Среднеквадратическое значение силы переменного тока нулевой последовательности $3I_0$,	от 0 до 1,5 I _{ном}	± 0,2 (d)
	M	Среднеквадратическое значение силы переменного тока, А	от 0,001 до 1, от 0,001 до 0,25 от 0,001 до 0,063	± 0,5 (g)
	A	Среднеквадратическое значение напряжения переменного тока, В	от 0,1 до 1,5 U _{ном}	$\pm0,\!001$ · $\mathrm{U}_{\scriptscriptstyle\mathrm{HOM}}(\Delta)$
MU	В	Среднеквадратическое значение напряжения переменного тока, В	от 0,1 до 1,5 U _{ном}	± 0,1 (d)
IVIO	С	Среднеквадратическое значение напряжения переменного тока, В	от 0,1 до 1,5 U _{ном}	$\pm0,\!002$ · $\mathrm{U}_{\scriptscriptstyle\mathrm{HOM}}(\Delta)$
	D	Среднеквадратическое значение напряжения переменного тока, В	от 0,1 до 1,5 U _{ном}	± 0,2 (d)

Обознач	нение	Измеряемый параметр	Диапазон измерений	Пределы допускаемой основной погрешности Абсолютной Δ, Относительной δ, %, Приведённой g *, %
	Е	Среднеквадратическое значение напряжения переменного тока, В	от 0,1 до 1,5 U _{ном}	$\pm0,\!005\cdot \mathrm{U}_{\scriptscriptstyle{\mathrm{HOM}}}(\Delta)$
	F	Среднеквадратическое значение напряжения переменного тока, В	от 0,1 до 1,5 U _{ном}	± 0,5 (d)
MU	G	Среднеквадратическое значение напряжения переменного тока, В	от 0,1 до 1,5 U _{ном}	$\pm~0.01\cdot \mathrm{U}_{\scriptscriptstyle{\mathrm{HOM}}}\left(\Delta ight)$
WIO	Н	Среднеквадратическое значение напряжения переменного тока, В	от 0,1 до 1,5 U _{ном}	± 1,0 (d)
	K	Среднеквадратическое значение напряжения переменного тока нулевой последовательности $3U_0$, В	от 0 до 1,2 U _{ном} 0 – 10 В	$^{\pm}$ 0,2 (d) $^{\pm}$ 1,0 (d)

Примечания:

Пределы допускаемой дополнительной погрешности, вызываемой изменением температуры окружающей среды на ± 10 °C составляют ½ от пределов допускаемой основной погрешности.

Таблица 7 - Метрологические характеристики при учете электроэнергии переменного тока (WA, WB).

Обозначение	Измеряемый параметр	Диапазон измерений	Пределы допускаемой основной погрешности Абсолютной Δ, Относительной δ, %; Приведённой g*, %
	Частота сети, Гц	от 40 до 60	± 0,01 (D)
WA	Коэффициент мощности K_P $(K_P = P/S)$	от минус 1 до 1	± 0,2 (d)
	Угол между напряжением и током каждой фазы, °	От минус 180 до плюс 180	± 0,5 (D)
	Активная мощность P , Вт	от $0.8 \cdot U_{\text{ном}}$ до $1.2 \cdot U_{\text{ном}}$,	$\pm0,2$ (d) для: $0,05artimes_{ ext{Hom}} \mathfrak{L} I \mathfrak{L} 1,5artimes_{ ext{Hom}} \ 0,8 < K_P \mathfrak{L} 1$
		от $0,01 \cdot I_{\text{HOM}}$ до $1,5 \cdot I_{\text{HOM}},$ $0,25 \ \pounds \ /K_P / \ \pounds \ 1$	$\pm0,4$ (d) для: $0,01 lpha_{ ext{Hom}} \mathfrak{L} I \!\!<\!\!0,05 lpha_{ ext{Hom}} \ 0,8 < K_P \mathfrak{L} 1$

^{* -} Пределы допускаемой приведенной (к верхнему значению диапазона измерения) погрешности.

Продо	лжение гаолицы /	1	
Обозначение	Измеряемый параметр	Диапазон измерений	Пределы допускаемой основной погрешности Абсолютной Δ, Относительной δ, %; Приведённой g*, %
			$\pm 0,3$ (d) для: $0,1$ Х $_{\text{ном}}$ £ I £ $1,5$ Х $_{\text{ном}}$ $0,5$ £ $ K_P $ £ $0,8$ $\pm 0,5$ (d) для: $0,02$ Х $_{\text{ном}}$ £ I < $0,1$ Х $_{\text{ном}}$ $0,5$ £ $ K_P $ £ $0,8$
			$\pm0,5$ (d) для: $0,1armatht{\mathcal{A}_{ ext{HOM}}}$ £ I £ $1,5armall_{ ext{HOM}}$ $0,25$ £ $ K_P <0,5$
WA	Реактивная мощность Q^{**} , вар	от $0,8 \cdot U_{\text{ном}}$ до $1,2 \cdot U_{\text{ном}}$, от $0,02 \cdot I_{\text{ном}}$ до $1,5 \cdot I_{\text{ном}}$, $0,25 \ \mathfrak{E} \ K_{Q} \ \mathfrak{E} \ 1$	$\pm 0,5$ (d) для: $0,05 M_{\text{HOM}} \pounds I \pounds 1,5 M_{\text{HOM}}$ $0,8 < K_Q \pounds 1$, где $K_Q = Q/S$ $\pm 0,75$ (d) для: $0,02 M_{\text{HOM}} \pounds I < 0,05 M_{\text{HOM}}$ $0,8 < K_Q \pounds 1$ $\pm 0,5$ (d) для: $0,1 M_{\text{HOM}} \pounds I \pounds 1,5 M_{\text{HOM}}$ $0,5 \pounds K_Q \pounds 0,8$ $\pm 0,75$ (d) для: $0,05 M_{\text{HOM}} \pounds I < 0,1 M_{\text{HOM}} \pounds I $ $0,05 M_{\text{HOM}} \pounds I $
	Полная мощность S , $B \cdot A$	от $0.8 \cdot U_{\text{ном}}$ до $1.2 \cdot U_{\text{ном}}$, от $0.01 \cdot I_{\text{ном}}$ до $1.5 \cdot I_{\text{ном}}$	$\pm0,5$ (d) для: $0,05\cdot I_{ ext{HOM}}{\le}I{\le}1,5\cdot I_{ ext{HOM}}$ $\pm1,0$ (d) для: $0,01\cdot I_{ ext{HOM}}{\le}I{<}0,05\cdot I_{ ext{HOM}}$
	Активная энергия	-	Равны пределам погрешности, установленным для класса точности 0,2S по ГОСТ 31819.22-2012
	Реактивная энергия	-	Равны пределам погрешности, установленным для класса точности 1,0 по ГОСТ 31819.23-2012

Прод	олжение таолицы /	1	
Обозначение	Измеряемый параметр	Диапазон измерений	Пределы допускаемой основной погрешности Абсолютной Δ, Относительной δ, %; Приведённой g*, %
	Частота сети, Гц	от 40 до 60	± 0,01 (D)
	Коэффициент мощности K_P $(K_P = P/S)$	от минус 1 до 1	± 0,2 (d)
	Угол между напряжением и током каждой фазы, °	От минус 180 до 180	± 0,5 (D)
			$\pm 0,5$ (d) для: $0,05 leph_{HoM} \pounds I \pounds 1,5 leph_{HoM} $ $0,8 < K_P \pounds 1$
		от $0,8 \cdot U_{ ext{ном}}$ до $1,2 \cdot U_{ ext{ном}}$,	$\pm 1,0$ (d) для: $0,01$ Х $_{ ext{HOM}}$ £ I < $0,05$ Х $_{ ext{HOM}}$ $0,8$ < $ K_P $ £ 1 $\pm 0,6$ (d) для:
	Активная мощность P , Вт	от $0,01 \cdot I_{\text{ном}}$ до $1,5 \cdot I_{\text{ном}},$	$0.1 extbf{X}_{\text{HOM}} extbf{£} I extbf{£} 1.5 extbf{X}_{\text{HOM}}$ $0.5 extbf{£} K_P extbf{£} 0.8$
		$0,25 \mathfrak{L} K_P \mathfrak{L} 1$	± 1,0 (d) для: 0,02¼ _{ном} £ <i>I</i> <0,1¼ _{ном} 0,5 £ <i>K_P</i> £ 0,8
			\pm 1,0 (d) для: $0,1$ Х $_{ ext{HOM}}$ £ I £1,5Х $_{ ext{HOM}}$ $0,25$ £ $ K_P <0,5$
WB		ot $0,\!8\cdot\!U_{\scriptscriptstyle{\mathrm{HOM}}}$	± 0.5 (d) для: $0.05 extbf{ iny M}_{ ext{HOM}} ag{E} I ag{E} 1.5 extbf{ iny M}_{ ext{HOM}} \ 0.8 < K_Q ag{E} 1,$ где $K_Q = Q/S$ ± 0.75 (d) для: $0.02 extbf{ iny M}_{ ext{HOM}} ag{E} I < 0.05 extbf{ iny M}_{ ext{HOM}}$
	Реактивная мощность Q^{**} , вар	до 1,2 $\cdot U_{ ext{Hom}}$, от 0,02 $\cdot I_{ ext{Hom}}$ до 1,5 $\cdot I_{ ext{Hom}}$,	$0.8 < K_Q \pounds 1$ ± 0.5 (d) для:
			$0.1 \times_{\text{Hom}} \pounds I \pounds 1.5 \times_{\text{Hom}}$ $0.5 \pounds K_O \pounds 0.8$
		$0.25 \; \mathfrak{E} \; K_Q \; \mathfrak{E} \; 1$	± 0.75 (d) для: $0.05 lpha_{ ext{Hom}} \pounds I < 0.1 lpha_{ ext{Hom}}$ $0.5 \pounds K_Q \pounds 0.8$
			± 0.75 (d) для: $0.1 extbf{ iny Hom} amatharpoons I amatharpoons I,5 extbf{ iny Hom} \ 0.25 amatharpoons K_Q < 0.5$
	Полная мощность, В-А	от $0,8 \cdot U_{\text{ном}}$ до $1,2 \cdot U_{\text{ном}}$, от $0,01 \cdot I_{\text{ном}}$ до $1,5 \cdot I_{\text{ном}}$	$\pm 0,5$ (d) для: $0,05 \cdot I_{\text{HOM}} \leq I \leq 1,5 \cdot I_{\text{HOM}}$ $\pm 1,0$ (d) для: $0,01 \cdot I_{\text{HOM}} \leq I < 0,05 \cdot I_{\text{HOM}}$
	Активная энергия	-	Равны пределам погрешности,

Обозначение	Измеряемый параметр	Диапазон измерений	Пределы допускаемой основной погрешности Абсолютной Δ, Относительной δ, %;
			Приведённой g*, %
			установленным для класса точности 0,5S по ГОСТ 31819.22-2012
WB			Равны пределам погрешности,
	Реактивная энергия	-	установленным для
			класса точности 1,0 по
			ГОСТ 31819.23-2012

Примечания:

** - Реактивная мощность рассчитывается по формуле $\mathbf{\emph{Q}} = \sqrt{\mathbf{\emph{S}}^2 - \mathbf{\emph{P}}^2}$

Пределы допускаемой дополнительной погрешности, вызываемой изменением температуры окружающей среды на $\pm 10~^{\circ}\mathrm{C}$ составляют ½ от пределов допускаемой основной погрешности.

Таблица 8 - Метрологические характеристики при учете электроэнергии постоянного тока (EA, EB).

Обозначение	Измеряемый параметр	Диапазон измерений	Пределы допускаемой основной относительной погрешности, %
	Моницости постоянного	$(0,5-1,5) \cdot U_{\text{HOM}}, \ (0,25-1,5) \cdot I_{\text{HOM}}$	±0,5
EA	Мощность постоянного тока, энергия постоянного тока -	$(0,5-1,5) \cdot U_{ ext{HOM}}, \ (0,05-0,25) \cdot I_{ ext{HOM}}$	±1,0
		$(0.5-1.5) \cdot U_{ ext{HOM}}, \ (0.01-0.05) \cdot I_{ ext{HOM}}$	±2,0
	Мощность постоянного ЕВ тока, энергия постоянного тока	$(0,5-1,5)\cdot U_{ ext{Hom}},\ (0,25-1,5)\cdot I_{ ext{Hom}}$	±1,0
ЕВ		$(0.5-1.5) \cdot U_{ ext{HOM}}, \ (0.05-0.25) \cdot I_{ ext{HOM}}$	±2,0
		$(0,5-1,5)\cdot U_{ ext{HOM}}, \ (0,01-0,05)\cdot I_{ ext{HOM}}$	$\pm 4,0$
	Порог чувствительности,		
EA; EB	% номинального тока, не более	1	-

^{* -} Пределы допускаемой приведенной (к верхнему значению диапазона измерения) погрешности.

Примечания:

- 1) Номинальные значения силы постоянного тока на первичных преобразователях (при использовании шунта 75 мВ), A: 5; 50; 100; 150; 300; 500; 750; 1000; 1500; 2000; 3000; 4000; 5000; 6000; 7500.
- 2) Номинальные значения силы постоянного тока на первичных преобразователях токнапряжение (напряжение на входе устройства в диапазоне от 0 до 10 В), А: 150, 300; 500; 750; 1000; 1500.
- 3) Номинальные значения напряжения постоянного тока на первичных преобразователях (напряжение на входе устройства в диапазоне от 0 до 10 В), В: 100; 400; 600; 800; 1500; 3000.
- 4) Пределы допускаемой дополнительной погрешности, вызываемой изменением температуры окружающей среды на ± 10 °C составляют ½ от пределов допускаемой основной погрешности.

Таблица 9 - Метрологические характеристики при измерении ПКЭ (обозначение Q).

Two may in the post of	The state of the participation of the state	та при измерении тих	(0000116.1011116 Q).
Измеряемый параметр	Диапазон измерений	Пределы допускаемой погрешности (пределы допускаемой основной погрешности) 1: абсолютной D; относительной d, %; приведённой g, %	Примечание
1 Среднеквадратическое значение фазного, междуфазного напряжения U^{2} , В	от $0.01 \cdot U_{\text{ном}}^{3)}$ до $1.5 \cdot U_{\text{ном}}$	± 0.03 (g) при $0.01 \cdot U_{\text{ном}} \leq U < 0.1 \cdot U_{\text{ном}};$ ± 0.1 (g) при $U \geq 0.1 \cdot U_{\text{ном}}$	Пределы допускаемой погрешности g относительно $U_{\text{ном}}$
2 Отрицательное отклонение фазного, междуфазного напряжения $\mathrm{d}U_{\text{(-)}}$, %	от 0 до 90	± 0,1 (D)	_
3 Положительное отклонение фазного, междуфазного напряжения $\mathrm{d}U_{(+)}$, %	от 0 до 50	± 0,1 (D)	_
4 Отклонение (установившееся отклонение) фазного, междуфазного напряжения dU_y^{3} , %	от минус 30 до 30	± 0,2 (D)	_
5 Частота f, Гц	от 42,5 до 57,5	± 0,01 (D)	_
6 Отклонение частоты Δf, Гц	от минус 7,5 до 7,5	± 0,01 (D)	_
7 Коэффициент несимметрии напряжений по обратной последовательности K_{2U} , %	от 0 до 30	± 0,15 (D)	_
8 Коэффициент несимметрии напряжений по нулевой последовательности К _{0U} , %	от 0 до 30	± 0,15 (D)	_

продолжение таолицы	1 /		
Измеряемый параметр	Диапазон измерений	Пределы допускаемой погрешности (пределы допускаемой основной погрешности) 1): абсолютной D; относительной d, %; приведённой g, %	Примечание
9 Суммарный коэффициент		± 0,05·(D)	$K_{\rm U} < 1$
гармонических составляющих (коэффициент искажения синусоидальности кривой) фазного, междуфазного напряжения K_U , %	от 0,1 до 30	± 5,0 (d)	K _U ³ 1
10 Коэффициент п-ой		± 0,05 (D)	$K_{U(n)} < 1$
гармонической составляющей фазного, междуфазного напряжения $K_{U(n)}$, % (для n от 2 до 50)	от 0,05 до 30	± 5,0 (d)	K _{U(n)} ³ 1
11 Среднеквадратическое значение n-ой гармонической составляющей фазного, междуфазного напряжения	от 0,0005·U _{ном} до 0,3·U _{ном}	± 0,05 (g)	$U_{sg(n)} < 0.01 \cdot U_{\text{ном}}$ Пределы допускаемой погрешности ${f g}$ относительно $U_{\text{ном}}$
U _{sg(n)} , В (для n от 2 до 50)		$\pm 5.0 (d)$	$U_{sg(n)}$ 3 $0.01 \cdot U_{HOM}$
12 Коэффициент m-ой интергамонической	0.07	± 0,05 (D)	$K_{\text{Uisg(m)}} < 1$
составляющей фазного, междуфазного напряжения $K_{\mathrm{Uisg(m)}}$, % (до 50 порядка)	от 0,05 до 30	\pm 5,0 (d)	K _{Uisg(m)} ³ 1
13 Среднеквадратическое значение m-ой интергамонической составляющей фазного,	от 0,0005·U _{ном} до 0,3·U _{ном}	± 0,05 (g)	$U_{isg(m)} < 0.01 \cdot U_{Hom}$ Пределы допускаемой погрешности g относительно U_{Hom}
междуфазного напряжения $U_{isg(m)}$, B (до 50 порядка)		± 5,0 (d)	U _{isg(m)} 3 0,01·U _{ном}
14 Длительность провала и прерывания напряжения Δt_n , с	от 0,01 до 60	± 0,01 (D)	-
15 Глубина провала напряжения dU_n , %	от 10 до 100	± 0,2 (D)	_
16 Остаточное напряжение при провале напряжения U_{res} , B	от 0,01·U _{ном} до 0,9·U _{ном}	± 0,2 (g)	Пределы допускаемой погрешности g относительно $U_{\text{ном}}$
17 Длительность перенапряжения $\Delta t_{\text{перU}}$, с	от 0,01 до 600	± 0,01 (D)	-

продолжение таолицы	1 7		
Измеряемый параметр	Диапазон измерений	Пределы допускаемой погрешности (пределы допускаемой основной погрешности) 1): абсолютной D; относительной d, %; приведённой g, %	Примечание
18 Коэффициент временного перенапряжения K_{nepU} , отн.ед.	от 1,1 до 2,0	± 0,002 (D)	_
19 Максимальное значение напряжения при перенапряжении U _{пер} , В	от 1,1·U _{ном} до 2,0·U _{ном}	± 0,2 (g)	Пределы допускаемой погрешности g относительно U _{ном}
20 Доза фликера (кратковременная P_{st} , длительная P_{lt}) отн.ед.	от 0,2 до 20	± 5 (d)	_
21 Среднеквадратическое значение силы тока I^{4} , A	от $0,01 \cdot I_{\text{ном}}$ до $1,5 \cdot I_{\text{ном}}$	±0.03 (g) при $0.01 \cdot I_{ m HoM} \leq I < 0.1 \cdot I_{ m Hom}; \ \pm0.1$ (g) при $I \geq 0.1 \cdot I_{ m HoM}$	Пределы допускаемой погрешности g относительно І _{ном}
22 Коэффициент несимметрии токов по обратной последовательности K_{2I} , %	от 0 до 250	± 0,1 (D)	$0.05 \cdot I_{\text{HOM}} \pounds I \pounds 1.5 \cdot I_{\text{HOM}}$
23 Коэффициент несимметрии токов по нулевой последовательности K_{0I} , %	от 0 до 250	± 0,1 (D)	$0.05 \cdot I_{\text{HOM}} \pounds I \pounds 1.5 \cdot I_{\text{HOM}}$
24.6		± 0,15 (D)	$0.01 \cdot I_{\text{HOM}} \mathcal{E} I \mathcal{E} 0.1 \cdot I_{\text{HOM}},$ $K_I < 3$
24 Суммарный коэффициент гармонических составляющих	om 0 1 mo 100	± 5,0 (d)	$0.01 \cdot I_{\text{HOM}} \mathcal{E} I \mathcal{E} 0.1 \cdot I_{\text{HOM}},$ $K_I^3 3$
(коэффициент искажения синусоидальности кривой)	от 0,1 до 100	± 0,05 (D)	$I \ge 0.1 \cdot I_{\text{HOM}},$ $K_I < 2.5$
тока КІ, %		± 2,0 (d)	$I \ge 0, 1 \cdot I_{\text{HOM}},$ $K_I^3 2, 5$
25 Коэффициент n -ой гармонической составляющей тока $K_{I(n)}$, %	от 0,05 до 100	± 0,15 (D)	$K_{I(n)} < 3$
(для <i>n</i> от 2 до 50)	100	± 5,0 (d)	<i>K</i> _{<i>I</i>(<i>n</i>)} ³ 3
26 Среднеквадратическое значение n -ой гармонической составляющей тока $I_{sg(n)}$, А (для n от 2 до 50)	от 0,0005 $\cdot I_{\text{ном}}$ до $I_{\text{ном}}$	± 0,15 (g)	$I_{sg(n)} < 0.03 \cdot I_{\text{ном}}$ Пределы допускаемой погрешности ${\sf g}$ относительно $I_{\text{ном}}$
		$\pm 5,0$ (d)	$I_{sg(n)}$ 3 0,03· I_{HOM}
27 Коэффициент m -ой интергармонической составляющей тока $K_{lisg(m)}$, %	от 0,05 до 250/(<i>m</i> + 1)	$\pm 0.15 \cdot I_{\text{HoM}} / I_{(1)} \text{ (D)}$	$K_{lisg(m)} < 3 \cdot I_{HOM}/I_{(1)}$
(до 50 порядка)	до 230/(111 т 1)	± 5,0 (d)	$K_{Iisg(m)}$ ³ $3 \cdot I_{HOM}/I_{(1)}$

Измеряемый параметр	Диапазон измерений	Пределы допускаемой погрешности (пределы допускаемой основной погрешности) 1): абсолютной D; относительной d, %; приведённой g, %	Примечание
28 Среднеквадратическое значение m -ой интергармонической составляющей тока $I_{isg(m)}$, А (до 50 порядка)	от $0,0005 \cdot I_{\text{ном}}$ до $2,5 \cdot I_{\text{ном}}/(m+1)$	± 0,15 (g)	$I_{isg(m)} < 0.03 \cdot I_{\text{ном}}$ Пределы допускаемой погрешности g относительно $I_{\text{ном}}$
-		± 5,0 (d)	$I_{isg(m)}$ 3 $0.03 \cdot I_{HOM}$
29 Угол фазового сдвига между фазными напряжениями основной частоты ј $_U$	от минус 180° до 180°	± 0,1° (D)	$0.8 \cdot U_{\text{HOM}} \mathcal{E}U \mathcal{E}1.2 \cdot U_{\text{HOM}}$
30 Угол фазового сдвига между фазными токами	от минус 180°	± 0,1° (D)	$0,1 \cdot I_{\text{HOM}} \ \mathcal{L} \ I \ \mathcal{L} \ 1,5 \cdot I_{\text{HOM}}$
основной частоты j_I	до 180°	± 0,3° (D)	$0.01 \cdot I_{\text{HOM}} \mathfrak{L} I < 0.1 \cdot I_{\text{HOM}}$
31 Угол фазового сдвига	от минус 180° до 180°	± 0,1° (D)	$0.1 \cdot I_{\text{HOM}} \mathcal{E} I \mathcal{E} 1.5 \cdot I_{\text{HOM}}$ $0.8 \cdot U_{\text{HOM}} \mathcal{E} U \mathcal{E} 1.2 \cdot U_{\text{HOM}}$
между напряжением и одноименным током		± 0,3° (D)	$\begin{array}{c} 0.01 \cdot I_{\text{HOM}} \pounds I \!\!<\!\! 0.1 \cdot I_{\text{HOM}} \\ 0.8 \cdot U_{\text{HOM}} \pounds U \pounds 1.2 \cdot U_{\text{HOM}} \end{array}$
основной частоты ј $UI^{5)}$		± 3° (D)	$0.01 \cdot I_{\text{HOM}} \pounds I \pounds 1.5 \cdot I_{\text{HOM}}$ $0.01 \cdot U_{\text{HOM}} \pounds U < 0.8 \cdot U_{\text{HOM}}$
	от минус 180° до 180°	± 3° (D)	$0,01 \cdot I_{HOM} \pounds I \pounds 0,1 \cdot I_{HOM}$ $0,8 \cdot U_{HOM} \pounds U$ $5 \% \pounds K_{I(n)}$ $5 \% \pounds K_{U(n)}$
32 Угол фазового сдвига между <i>n</i> –ми гармоническими		± 5° (D)	$0.01I_{ ext{Hom}}$ £ I £ $0.1\cdot I_{ ext{Hom}}$ $0.8\cdot U_{ ext{Hom}}$ £ U 1% £ $K_{I(n)}$ < 5% 1% £ $K_{U(n)}$ < 5%
составляющими напряжения и тока ј $UI(n)$		± 1° (D)	$I \!\! \geq \!\! 0, 1 \cdot \! I_{\scriptscriptstyle ext{HOM}} \ 0, 8 \cdot U_{\scriptscriptstyle ext{HOM}} \!\! \mathfrak{L} U \ 5 \ \% \mathfrak{L} K_{I(n)} \ 5 \ \% \mathfrak{L} K_{U(n)}$
		± 3° (D)	$I \ge 0, 1 \cdot I_{\text{HOM}}$ $0, 8 \cdot U_{\text{HOM}} \pounds U$ $1 \% \pounds K_{I(n)} < 5 \%$ $1 \% \pounds K_{U(n)} < 5 \%$

продолжение таблицы у			
Измеряемый параметр	Диапазон измерений	Пределы допускаемой погрешности (пределы допускаемой основной погрешности) 1): абсолютной D; относительной d, %; приведённой g, %	Примечание
33 Угол фазового сдвига п-		± 3° (D)	$0.8 \cdot U_{\text{HOM}} \mathfrak{L} U \ 0.2 \ \% \mathfrak{L} K_{U(n)} < 1 \ \%$
ой (250) гармонической составляющей напряжения	от минус 180° до 180°	± 1,5° (D)	$0.8 \cdot U_{ ext{ iny HOM}} \mathfrak{E} U$ 1 % $\mathfrak{E} K_{U(n)} \!\!< 5$ %
$\dot{\mathbf{J}}$ $U(n)$		± 0,9° (D)	$0.8 \cdot U_{\scriptscriptstyle{HOM}} \mathfrak{L} U \ K_{U(n)} \!\! \geq \! 5 \ \%$
34 Коэффициент мощности	1 1	± 0,01 (D)	$0.05 M_{\text{HOM}} \text{£} I \text{£} 1.5 M_{\text{HOM}}$
$(K_P = P/S)$	от минус 1 до 1	± 0,02 (D)	$0.01 \times 1.00 $
,	от $0.8 \cdot U_{\text{ном}}$ до $1.2 \cdot U_{\text{ном}}$, от $0.01 \cdot I_{\text{ном}}$ до $1.5 \cdot I_{\text{ном}}$, $0.25 \mathfrak{E} K_P \mathfrak{E} 1$	± 0,2 (d)	$0.05 extstyle{ iny M} extstyle{ iny E} 1.5 extstyle{ iny M}_{ extstyle{ iny HOM}} $ $0.8 < K_P extstyle{ iny E} 1$
25 A		± 0,4 (d)	$0.01 \times 1.005 \times 1.000 = 0.000 = 0.000 \times 1.000 = 0.000 \times 1.000 = 0.000 = 0.000 = 0.000 = 0.000 = 0.000 = 0.000 = 0.000 = 0.000 = 0.000 = 0.000 = 0.0000 = 0.000 = 0.000 = 0.000 = 0.000 = 0.000 = 0.000 = 0.000 = 0.00$
35 Активная однофазная, трехфазная мощность P^{6} , Вт		± 0,3 (d)	$0.1 extstyle{1}_{ ext{HoM}} extstyle{1} extstyle{1}.5 extstyle{1}_{ ext{HoM}} \ 0.5 extstyle{1} extstyle{1} extstyle{1} extstyle{1} extstyle{0}.8$
		± 0,5 (d)	$0.02 x_{\text{HoM}} \pounds I < 0.1 x_{\text{HoM}}$ $0.5 \pounds K_P \pounds 0.8$
		± 0,5 (d)	$0.1 \times 1.5 $
36 Активная мощность прямой последовательности P_1 , B_T	от $0,001 \cdot S_{\text{ном}}$ до $1,5 \cdot S_{\text{ном}}$	$\pm[0.5+0.02\cdot(S_{\text{HOM}}/P_1-1)]$ (d)	$S_{ ext{ iny HOM}} = U_{ ext{ iny HOM}}{\cdot}I_{ ext{ iny HOM}}$
37 Активная мощность обратной последовательности P_2 , Вт	от $0,001 \cdot S_{\text{ном}}$ до $1,5 \cdot S_{\text{ном}}$	$\pm[0,5+0,02\cdot(S_{\text{HOM}}/P_2-1)]$ (d)	$S_{ ext{ iny HOM}} = U_{ ext{ iny HOM}}{\cdot} I_{ ext{ iny HOM}}$
38 Активная мощность нулевой последовательности P_0 , Вт	от $0,001 \cdot S_{\text{ном}}$ до $1,5 \cdot S_{\text{ном}}$	$\pm[0.5+0.02\cdot(S_{\text{HOM}}/P_0-1)] \tag{d}$	$S_{ ext{ iny HOM}} = U_{ ext{ iny HOM}}{\cdot}I_{ ext{ iny HOM}}$
39 Активная однофазная, трехфазная мощность n -ой гармонической составляющей $P_{(n)}$, Вт (для n от 2 до 50)	от $0,001 \cdot S_{\text{ном}}$ до $0,2 \cdot S_{\text{ном}}$	$ \pm [0.5 + 0.02 \cdot (S_{\text{HOM}}/P_{(n)} - 1)] $ (d)	$S_{ ext{ iny HOM}} = U_{ ext{ iny HOM}}{\cdot} I_{ ext{ iny HOM}}$

продолжение таолицы			
Измеряемый параметр	Диапазон измерений	Пределы допускаемой погрешности (пределы допускаемой основной погрешности) 1): абсолютной D; относительной d, %; приведённой g, %	Примечание
		± 0,5 (d)	0.05 Х $_{ m HOM}$ £ I £ 1.5 Х $_{ m HOM}$ $0.8 < K_Q $ £ 1 , где $K_Q = Q/S$
40 P	от $0,8 \cdot U_{\scriptscriptstyle ext{HOM}}$ до $1,2 \cdot U_{\scriptscriptstyle ext{HOM}},$	± 0,75 (d)	$0.02 \lambda_{\text{HoM}} \mathcal{E} I < 0.05 \lambda_{\text{HoM}}$ $0.8 < K_O \mathcal{E} 1$
40 Реактивная однофазная, трехфазная мощность Q^{7} , вар	от $0.02 \cdot I_{\text{ном}}$ до $1.5 \cdot I_{\text{ном}}$,	± 0,5 (d)	$0.1 \times_{\text{Hom}} \mathcal{E} I \mathcal{E} 1.5 \times_{\text{Hom}}$ $0.5 \mathcal{E} K_Q \mathcal{E} 0.8$
	$0,25 \ \mathfrak{L} K_Q \ \mathfrak{L} \ 1$	± 0,75 (d)	$0.05 \chi_{\text{HoM}} \pounds I < 0.1 \chi_{\text{HoM}}$ $0.5 \pounds K_Q \pounds 0.8$
		± 0,75 (d)	$0.1 \times_{\text{HOM}} £ I £ 1.5 \times_{\text{HOM}}$ $0.25 £ K_Q < 0.5$
41 Реактивная мощность прямой последовательности Q_1 , вар	от $0,001 \cdot S_{\text{ном}}$ до $1,5 \cdot S_{\text{ном}}$	$ \pm [0.5 + 0.02 \cdot (S_{\text{HOM}}/Q_1 - 1)] $ (d)	$S_{ ext{ iny HOM}} = U_{ ext{ iny HOM}}{\cdot} I_{ ext{ iny HOM}}$
42 Реактивная мощность обратной последовательности Q_2 , вар	от $0,001 \cdot S_{\text{ном}}$ до $1,5 \cdot S_{\text{ном}}$	$ \pm [0,5+0,02\cdot (S_{\text{HOM}}/Q_2-1)] $ (d)	$S_{ ext{ iny HOM}} = U_{ ext{ iny HOM}}{\cdot} I_{ ext{ iny HOM}}$
43 Реактивная мощность нулевой последовательности Q_0 , вар	от $0,001 \cdot S_{\text{ном}}$ до $1,5 \cdot S_{\text{ном}}$	$\pm [0.5 + 0.02 \cdot (S_{\text{HOM}}/Q_0 - 1)]$ (d)	$S_{ ext{ iny HOM}} = U_{ ext{ iny HOM}}{\cdot} I_{ ext{ iny HOM}}$
44 Реактивная однофазная, трехфазная мощность n -ой гармонической составляющей $Q_{(n)}$, вар (для n от 2 до 50)	от $0{,}001 \cdot S_{\text{ном}}$ до $0{,}2 \cdot S_{\text{ном}}$	$\pm [0.5+0.02\cdot(S_{\text{HOM}}/Q_{(n)}-1)]$ (d)	$S_{ ext{ iny HOM}} = U_{ ext{ iny HOM}} {\cdot} I_{ ext{ iny HOM}}$
45 Полная однофазная,	от $0.8 \cdot U_{ ext{hom}}$ до $1.2 \cdot U_{ ext{hom}}$,	± 0,5 (d)	$0.05 \cdot I_{\text{HOM}} \leq I \leq 1.5 \cdot I_{\text{HOM}}$
трехфазная мощность $S^{(8)}$, $B \cdot A$	от $0.01 \cdot I_{ ext{HOM}}$ до $1.5 \cdot I_{ ext{HOM}}$	± 1,0 (d)	$0.01 \cdot I_{\text{HOM}} \leq I < 0.05 \cdot I_{\text{HOM}}$
46 Полная мощность прямой последовательности S_1 , В· А	от $0,001 \cdot S_{\text{ном}}$ до $1,5 \cdot S_{\text{ном}}$	$\pm[0,5+0,02\cdot(S_{\text{HOM}}/S_1-1)]$ (d)	$S_{ ext{hom}} = U_{ ext{hom}} \cdot I_{ ext{hom}}$
47 Полная мощность обратной последовательности S_2 , $B \cdot A$	от $0,001 \cdot S_{\text{ном}}$ до $1,5 \cdot S_{\text{ном}}$	$\pm [0,5+0,02\cdot (S_{\text{HOM}}/S_2-1)]$ (d)	$S_{ ext{ iny HOM}} = U_{ ext{ iny HOM}} {\cdot} I_{ ext{ iny HOM}}$
48 Полная мощность нулевой последовательности S_0 , $\mathbf{B} \cdot \mathbf{A}$	от $0,001 \cdot S_{\text{ном}}$ до $1,5 \cdot S_{\text{ном}}$	$\pm[0.5+0.02\cdot(S_{\text{HOM}}/S_0-1)]$ (d)	$S_{ ext{ iny HOM}} = U_{ ext{ iny HOM}} {\cdot} I_{ ext{ iny HOM}}$
49 Полная однофазная, трехфазная мощность n -ой гармонической составляющей $S_{(n)}$, B·A (для n от 2 до 50)	от $0,001 \cdot S_{\text{ном}}$ до $0,2 \cdot S_{\text{ном}}$	$ \pm [0,5+0,02 \cdot (S_{\text{HOM}}/S_{(n)}-1)] $ (d)	$S_{ ext{ iny HOM}} = U_{ ext{ iny HOM}}{\cdot} I_{ ext{ iny HOM}}$

Измеряемый параметр	Диапазон измерений	Пределы допускаемой погрешности (пределы допускаемой основной погрешности) 1): абсолютной D; относительной d, %; приведённой g, %	Примечание
50 Активная энергия	-	Равны пределам погрешности, установленным для класса точности 0,2S по ГОСТ 31819.22-2012	-
51 Реактивная энергия	-	Равны пределам погрешности, установленным для класса точности 1,0 по ГОСТ 31819.23-2012	-

Примечания:

- 1) Для измеряемых параметров, для которых установлены пределы допускаемой дополнительной погрешности, в настоящей таблице приведены пределы допускаемой основной погрешности; для измеряемых параметров, для которых пределы допускаемой дополнительной погрешности не установлены, приведены пределы допускаемой погрешности.
- 2) Среднеквадратическое значение напряжения переменного тока с учётом сигналов основной частоты, гармоник и интергармоник U, среднеквадратическое значение напряжения основной частоты $U_{(1)}$, среднеквадратическое значение напряжения прямой последовательности U_1 , среднеквадратическое значение напряжения обратной последовательности U_2 , среднеквадратическое значение напряжения нулевой последовательности U_0 .
- 3) Установившееся отклонение напряжения основной частоты $dU_{(1)}$, установившееся отклонение напряжения прямой последовательности dU_1 и отклонение среднеквадратического значения напряжения (с учетом гармоник и интергармоник) dU.
- 4) Среднеквадратическое значение силы переменного тока с учётом сигналов основной частоты, гармоник и интергармоник I, среднеквадратическое значение силы тока основной частоты $I_{(1)}$, среднеквадратическое значение силы тока прямой последовательности I_1 , среднеквадратическое значение силы тока обратной последовательности I_2 , среднеквадратическое значение силы тока нулевой последовательности I_0 .
- 5) Угол фазового сдвига между напряжением и одноименным током основной частоты $\mathbf{j}_{UI(1)}$, напряжением и током прямой последовательности $\mathbf{j}_{UI(1)}$, напряжением и током обратной последовательности $\mathbf{j}_{UI(2)}$, напряжением и током нулевой последовательности $\mathbf{j}_{UI(2)}$.
- 6) Активная мощность сигнала основной частоты $P_{(1)}$ и активная мощность для полосы частот от 1 до 50 гармонической составляющей P.
- 8) Полная мощность сигнала основной частоты $S_{(1)}$ и полная мощность для полосы частот от 1 до 50 гармонической составляющей S.

Пределы допускаемой дополнительной температурной погрешности при измерении параметров, приведённых в строках 1-8, 15, 16, 18, 19, 21, 35, 40, 45, 50, 51 таблицы 8, составляют 0,5 пределов допускаемой основной погрешности на каждые $10\,^{\circ}$ С изменения температуры окружающей среды от нормального значения.

Таблица 10 — Метрологические характеристики при измерении значений напряжения и преобразования для выдачи в сеть Ethernet цифровых потоков режиме реального времени (обозначение — SVxxxAY).

(0003начение – 5 v хххх 1).			
Название характеристики	depRTU-SV256AY, depRTU-SV80AY		
Диапазон измерения и преобразования напряжения переменного тока в диапазоне частот переменного тока от 42,5 до 69 Гц	от 0,01·U _{ном} до 2·U _{ном}		
Пределы допускаемой основной приведенной (к номинальному значению напряжения / силы тока) погрешности преобразования и измерения напряжения	$\pm 0{,}03$ (g) при $0{,}01 U_{ ext{Hom}} {\leq U} {< 0{,}1 {\cdot} U_{ ext{Hom}}};$		$0.01 \ U_{\text{HOM}} \leq U < 0.1 \cdot U_{\text{HOM}};$
переменного тока в диапазоне частот от 42,5 до 69 Гц, не более, %*	$\pm0,1$ (g) при $U \geq 0,1 \cdot U_{ ext{ iny HOM}}$		
Максимальное время задержки выдачи входного отсчета в Ethernet среду (при условии: 1 ASDU в Ethernet пакете и скорости в Ethernet не менее 100 Мбит/с), не более, мкс	500		
Пределы допускаемой основной абсолютной погрешности		В	$\pm0,1^\circ$
преобразования угла фазового сдвига между входным и выходным напряжением переменного тока (в диапазоне от $0.1 \cdot U_{\text{ном}}$ до $1.5 \cdot U_{\text{ном}}$)	Y=	С	± 0,05°
Количество выборок за период номинальной частоты счет/период	256 / 80		
Частота аналого-цифрового преобразования, Гц	12800 / 4000		
Формат передачи данных	Цифровой поток в соответствии с п. № 2.22 ТУ		

Примечание:

Таблица 11 - Метрологические характеристики при измерении значений тока и выдачи в сеть Ethernet цифровых потоков в режиме реального времени (обозначение - SVxxx Y_1Y_2).

Название характеристики	depRTU-SV256 Y_1Y_2 , depRTU-SV80 Y_1Y_2			depRTU-SV80-C2
Диапазон измерения и преобразования силы переменного тока в диапазоне частот переменного тока от 42,5 до 69 Гц	от 0,01·I _{ном} до 1,5·I _{ном}		,01·I _{ном} до 1,5·I _{ном}	от 0 до 40·I _{ном} (Режим кратковременной нагрузки до 0,5 с)
Пределы допускаемой основной погрешности* измерения и преобразования силы переменного тока в диапазоне частот от 42,5 до 69 Гц, не более, %	$\mathbf{Y}_1 =$	D	$\pm 0.5 (d^{***}) \mathrm{при}$ $0.01 I_{\mathrm{HOM}} \leq I < 0.05 \cdot I_{\mathrm{HOM}};$ $\pm 0.3 (d^{***}) \mathrm{при}$ $0.05 I_{\mathrm{HOM}} \leq I < 0.33 \cdot I_{\mathrm{HOM}};$	± 0.03 (g**) при $I < 0.1 \cdot I_{\text{Hom}};$ ± 0.2 (d***) при $0.1 \cdot I_{\text{Hom}} \leq I < 1.5 \cdot I_{\text{Hom}};$

^{*} - Пределы допускаемой дополнительной погрешности, вызываемой изменением температуры окружающей среды на ± 10 °C составляют 0,5 пределов основной погрешности при измерении соответствующего параметра.

Название характеристики	$\begin{array}{c} \text{depRTU-SV256Y}_1Y_2, \\ \text{depRTU-SV80Y}_1Y_2 \end{array}$			depRTU-SV80-C2
			$\pm 0.1 (g^{**})$ при $I \ge 0.33 \cdot I_{\text{ном}}$	$\pm 1,5 \; (d^{***}) \;$ при $I \geq 1,5 \cdot I_{\text{ном}}$
			$\pm 0.2 (d^{***})$ при $0.01 I_{\text{Hom}} \le I < 0.05 \cdot I_{\text{Hom}};$	
		Е	0,01 1 _{HOM} = 1 < 0,03 1 _{HOM} ,	
			$\pm 0.1 (d^{***})$ при $I \geq 0.05 \cdot I_{\text{ном}}$	
Максимальное время задержки выдачи входного отсчета в Ethernet				
среду (при условии: 1 ASDU в	500			
Ethernet пакете и скорости в Ethernet не менее 100 Мбит/с), не более, мкс				
Пределы допускаемой основной абсолютной погрешности		F	± 0,1°	
преобразования угла фазового сдвига между входной и выходной силой переменного тока (в диапазоне от $0.1 \cdot I_{\text{ном}}$ до $1.5 \cdot I_{\text{ном}}$)	Y ₂ =	G	± 0,05°	± 0,5°
Количество выборок за период номинальной частоты счет/период	256 / 80		80	
Частота аналого-цифрового преобразования, Гц	12800 / 4000 4000		4000	
Формат передачи данных	Цифровой поток в соответствии с п. № 2.22 ТУ			ии с п. № 2.22 ТУ

Примечания:

Таблица 12 - Метрологические характеристики каналов аналогового ввода сигналов от

первичных преобразователей (AIx)

перы	пресоб	разователен (АТХ).	
Обозначение		Диапазон измерений	Пределы допускаемой основной Погрешности: Абсолютной D ; Приведённой g*, %
	A	0 - 10 B	•
	В	0 - 5 мА	
	С	0 - 20 мА	$\pm 0,25$ (g)
		4 - 20 мА	
	AI D	0 - 20 мА	
AI		4 - 20 мА	
	Е	0 - 5 мА	
	F	± 10 B	$\pm 0.1 (g)$
	1	± 5 B	
	G	0 - 5 B	
	U	0 - 10 B	

^{*} Пределы допускаемой дополнительной погрешности, вызываемой изменением температуры окружающей среды на ±10 °C составляют 0,5 пределов основной погрешности при измерении соответствующего параметра.

^{**} Пределы допускаемой приведенной (к номинальному значению напряжения / силы тока) погрешности.

^{***} Пределы допускаемой относительной погрешности.

			Пределы допускаемой основной
Обозначение		Диапазон	Погрешности:
0003	начение	измерений	Абсолютной D;
			Приведённой g*, %
	Н	$\pm~20~{ m mA}$	± 0,1 (g)
	K	0 - 60 мВ	± 0,15 (D)
	L	0 - 75 мВ	± 0,5 (g)
	M	0 - 2 B	± 0,25 (g)
	N	От 0,8 до 1,2 Uном, Uном = $(100/\sqrt{3})/230$ В постоянного тока	± 0,005 Uном (D)
AI O	О	38 -105 Ом	
	P	76 - 210 Ом	
	Q	76 - 320 Ом	
	R	380 - 1050 Ом	±0,2 (g)
	S	48 - 160 Ом	
	T	96 - 320 Ом	
	U	38 - 210 Ом	±0,1 (g)
V	V	0 - 1400 Ом	± 1 (D)
	v	1400 - 2000 Ом	± 2 (D)
	W	0 - 3150 Ом	± 2 (D)
П	VV	3150 - 4500 Ом	± 4 (D)

Примечания:

Пределы допускаемой дополнительной погрешности, вызываемой изменением температуры окружающей среды на $\pm 10~^{\circ}\mathrm{C}$ составляют ½ от пределов допускаемой основной погрешности.

Таблица 13 - Метрологические характеристики каналов аналогового вывода сигналов от унифицированных первичных преобразователей (AOx).

Обо	эначение	Диапазон изменения выходных сигналов	Пределы допускаемой основной приведенной (к верхнему значению диапазона измерения) погрешности, %
	A	0 - 5 мА	
AO	В	0 - 10 B	±0,1
	С	0 - 20 мА	

Примечание:

Пределы допускаемой дополнительной погрешности, вызываемой изменением температуры окружающей среды на ± 10 °C составляют ½ от пределов допускаемой основной погрешности.

^{* -} Пределы допускаемой приведенной (к верхнему значению диапазона измерения) погрешности.

Таблица 14 - Метрологические характеристики при измерении частоты и счета

импульсов (CIx).

Обозначение	CI			
Характеристики	A	В	С	
Измеряемый параметр	Счет импульсов и частота входного сигнала	Счет импульсов	Счет импульсов и частота входного сигнала	
Диапазон входного сигнала f _{вх} , Гц	10 - 5000	0,1 - 200	0,1 - 200	
Длительность импульса, % от длины минимального периода, не менее	40 - 60	40 - 60	40 - 60	
Пределы допускаемой абсолютной погрешности счета импульсов, имп.	± 1	± 1	± 1	
Время измерения частоты t _{изм}	1 c	-	Программируется в диапазоне 5-65000 мс	
Временное разрешение t _{раз} , мс	-	-	1	
Пределы допускаемой относительной погрешности канала измерения частоты	$(1/(t_{_{\rm H3M}} \cdot f_{_{\rm BX}})) \cdot 100 + 0.01 \%$	-	$(t_{\text{pa3}}/t_{\text{изм}}) \cdot 100 \\ +0,01 \%$	

Таблица 15 – Общие технические характеристики

Устройства соответствуют I классу по способу защиты человека с током согласно ГОСТ 12.2.007.0-75	от поражения электрическим
Степень защиты (ГОСТ 14254-96/МЭК 529-89) устройств:	
- крейтового исполнения (depRTU-xx, depRTU-H-xx)	IP20
- полевого исполнения (depRTU-ПП-хх)	IP65
- исполнения depRTU-LT-xx	IP20
- исполнения depRTU-EM-xx	IP51
Потребляемая мощность (при Uном), не более	15 B·A
Габаритные размеры устройств (ШхВхГ), не более:	
- крейтового исполнения (depRTU-xx)	710×125×170 мм
- крейтового исполнения (depRTU-H-xx)	710×180×170 мм
- полевого исполнения (depRTU-ПП-хх)	285×260×80 мм
- исполнения depRTU-LT-xx	170×150×80 мм
- исполнения depRTU-EM-xx	175×285×100 мм
Масса устройства, не более	
- крейтового исполнения (depRTU-xx)	8 кг
- крейтового исполнения (depRTU-H-xx)	12 кг
- полевого исполнения (depRTU-ПП-xx)	4 кг
- исполнения depRTU-LT-xx	1 кг
- исполнения depRTU-EM-xx	2 кг
Средний срок службы, не менее	40 лет
Средняя наработка на отказ, не менее	140 000 ч.
Среднее время восстановления работоспособности, не более	30 мин

Знак утверждения типа

Знак утверждения типа наносится типографским способом на этикетку и эксплуатационную документацию устройств.

Комплектность средства измерений

В комплект поставки устройств многофункциональных depRTU входят:

- Устройство многофункциональное depRTU;
- Паспорт;
- Руководство по эксплуатации;
- Методика поверки;
- ΠO «depCalibrSV» ¹⁾;
- Устройство depRTU- 3^{1} .

Примечание:

¹⁾ - поставляется по заказу.

Поверка

осуществляется по документу 4252-501-86507412-2014 МП «Устройства многофункциональные depRTU. Методика поверки», утвержденным Φ ГУП «ВНИИМС» в марте 2015 г.

Перечень основного оборудования для поверки:

- 1. Калибратор переменного тока «Ресурс-К2М» (Г.Р. № 31319-12).
- 2. Калибратор многофункциональный модели ASC300-R (Г.Р. № 25895-09)
- 3. Прибор электроизмерительный эталонный многофункциональный Энергомонитор 3.1 К (Г.Р. № 35427-07).
 - 4. Счетчик эталонный SRS 121.3 (Г.Р. № 17750-08).
 - 5. Генератор сигналов специальной формы AFG-73051 (Г.Р. № 53065-13).
 - 6. Осциллограф цифровой TDS2012 (Г.Р. № 24018-06).
 - 7. Устройство синхронизации частоты и времени Метроном 600 (Г.Р. № 56465-14).
 - 8. Частотомер электронно-счетный Ч3-85/3R (Г.Р. № 32869-06).

Сведения о методиках (методах) измерений

Сведения приведены в руководстве по эксплуатации ДПАВ.421547.501РЭ.

Нормативные документы, устанавливающие требования устройствам многофункциональным depRTU:

- 1. ГОСТ 22261-94 «Средства измерений электрических и магнитных величин. Общие технические условия»;
- 2. ГОСТ 24855-81 «Преобразователи измерительные тока, напряжения, мощности, частоты, сопротивления аналоговые. Общие технические условия»;
- 3. ГОСТ 26.205-88 «Комплексы и устройства телемеханики. Общие технические условия»;
- 4. ГОСТ 30804.4.7-2013 (IEC 61000-4-7:2009) «Совместимость технических средств электромагнитная. Общее руководство по средствам измерений и измерениям гармоник и интергармоник для систем электроснабжения и подключаемых к ним технических средств»;
- 5. ГОСТ 30804.4.30-2013 (IEC 61000-4-30:2008) «Электрическая энергия. Совместимость технических средств электромагнитная. Методы измерений показателей качества электрической энергии»;

- 6. ГОСТ 31818.11-2012 (IEC 62052-11:2003) «Аппаратура для измерения электрической энергии переменного тока. Общие требования. Испытания и условия испытаний. Часть 11. Счетчики электрической энергии»;
- 7. ГОСТ 31819.22-2012 (IEC 62053-22:2003) «Аппаратура для измерения электрической энергии переменного тока. Частные требования. Часть 22. Статические счетчики активной энергии классов точности 0,2S и 0,5S»;
- 8. ГОСТ 31819.23-2012 (IEC 62053-23:2003) «Аппаратура для измерения электрической энергии переменного тока. Частные требования. Часть 23. Счетчики статические реактивной энергии»;
- 9. ГОСТ 32144-2013 «Электрическая энергия. Совместимость технических средств электромагнитная. Нормы качества электрической энергии в системах электроснабжения общего назначения»;
- 10. ГОСТ Р 51317.4.15-2012 (МЭК 61000-4-15–2010) «Совместимость технических средств электромагнитная. Фликерметр. Функциональные и конструктивные требования».
- 11. ГОСТ Р 52931-2008 «Приборы контроля и регулирования технологических процессов. Общие технические условия»;
- 12. ГОСТ Р 51840-2001 «Программируемые контроллеры. Общие положения и функциональные характеристики»;
- 13. ГОСТ Р 51841-2001 (МЭК 61131-2-92) «Программируемые контроллеры. Общие технические требования и методы испытаний»;
- 14. ГОСТ 6651-2009 «Термопреобразователи сопротивления из платины, меди и никеля. Общие технические требования и методы испытаний»;
- 15. ГОСТ Р 8.585-2001 «ГСИ. Термопары. Номинальные статические характеристики преобразования»;
- 16. ГОСТ Р 8.655-2009 «Государственная система обеспечения единства измерений. Средства измерений показателей качества электрической энергии. Общие технические требования»;
- 17. ГОСТ 10287-83 «Счетчики электрические постоянного тока. Общие технические условия»
- 18. ГОСТ 12.2.007.0-75. ССБТ. Изделия электротехнические. Общие требования безопасности;
- 19. ГОСТ ІЕС 60950-1-2011. Оборудование информационных технологий. Требования безопасности. Часть 1. Общие требования;
- 20. ГОСТ Р МЭК 870-3-93 «Устройства и системы телемеханики. Часть 3. Интерфейсы. Электрические характеристики»;
- 21. ГОСТ IEC 60870-4-2011 «Устройства и системы телемеханики. Часть 4. Технические требования»;
- 22. ТУ 4252-501-86507412-2014 «Устройства многофункциональные depRTU. Технические условия».

Изготовитель

Общество с ограниченной ответственностью «Компания ДЭП» (ООО «Компания ДЭП»), г. Москва.

Юридический адрес: 127055, г. Москва, пер. Порядковый, д.21;

Почтовый адрес: 117545 г. Москва, ул. Подольских Курсантов, д. 3, стр. 8

тел./факс: (495) 995-00-12

e-mail: mail@dep.ru

Испытательный центр

Федеральное государственное унитарное предприятие «Всероссийский научноисследовательский институт метрологической службы» (ФГУП «ВНИИМС»)

Адрес: 119361, г. Москва, ул. Озерная, д.46 Тел./факс: (495)437-55-77 / 437-56-66;

E-mail: office@vniims.ru, www.vniims.ru

Аттестат аккредитации Φ ГУП «ВНИИМС» по проведению испытаний средств измерений в целях утверждения типа № 30004-13 от 26.07.2013 г.

Заместитель Руководителя Федерального агентства по техническому регулированию и метрологии

			С.С. Голубен
М.п.	«	»	2015 г.