ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Теплосчетчики ВИС.Т2

Назначение средства измерений

Теплосчетчики ВИС.Т2 (далее – теплосчетчики), предназначены для измерения и коммерческого учета тепловой энергии (количества теплоты), параметров и расхода теплоносителя в системах тепло-водо-хладоснабжения, дозирования жидких сред и кондиционирования воздуха.

Описание средства измерений

Принцип работы теплосчётчика основан на измерении расхода, температуры и давления теплоносителя в прямом и обратном трубопроводах систем теплоснабжения и последующем определении тепловой энергии, объёма и других параметров теплоносителя путём обработки измерений тепловычислителем.

Теплосчетчики имеют два исполнения (ВС, ТС) (Рисунок 1), состоят из отдельных функциональных блоков - первичных полнопроходных электромагнитных преобразователей расхода, первичных погружных электромагнитных преобразователей скорости или средств измерений внесенных в Федеральный информационный фонд по обеспечению единства измерений, согласно таблицам 1,2,3, вычислителей количества теплоты, преобразователей расхода, преобразователей давления, термометров сопротивления, термометров с измерительными преобразователями и электронного блока

Электронный блок непрерывно контролирует исправность первичных преобразователей расхода (скорости), температуры и давления и линий связи с ними. Данные диагностики выводятся на индикатор. Электронный блок может иметь моноблочное или раздельное с первичным преобразователем расхода исполнение. По заказу потребителей может поддерживать цифровые интерфейсы RS-232, RS-485, Ethernet, M-BUS, OPC-сервер, HART, GSM и иметь токовый и/или частотный импульсный выходной сигнал (сигналы), пропорциональный объемному расходу (расходам). Электронный блок может иметь дополнительно интерфейс типа Centronics для подключения принтера или двухпроводную линию связи с гальванической развязкой на оптронах для объединения теплосчетчиков в локальную сеть. В зависимости от заказа электронный блок поставляется в металлическом или пластмассовом корпусе.

Значение наибольшего (максимального) объемного расхода G_B для электромагнитного преобразователя расхода соответствуют средней скорости потока от 1 до 10 м/с, значение переходного (линейного) объемного расхода G_Π соответствует 10% от G_B , значение наименьшего (минимального) объемного расхода G_H соответствует G_B/DD , где DD- динамический диапазон измерения расхода: DD=250, для полнопроходных первичных преобразователей расхода \mathcal{L}_V от 2,5 до 1500 мм (DD=10, 100, 500, 1000, 2000 по заказу); DD=100 для погружных первичных преобразователей скорости \mathcal{L}_V от 300 до 4000 мм. (DD=25, 50, 250 по заказу).

Таблица 1 - Типы применяемых преобразователей расхода и счетчиков

Тип расходомера	Номер в	Тип расходомера	Номер в
тип расходомера	Госреестре	тип расходомера	Госреестре
Преобразователи расчетно-	24849-10	Счетчики холодной и горячей	18312-03
измерительные ТЭКОН-19		воды ВМХ и ВМГ	
Счетчики холодной и горячей воды	40607-09	Счетчики холодной и горячей	15820-07
ВСХ, ВСХд, ВСГ, ВСГд, ВСТ		воды турбинные WP-Dynamic	
Расходомеры-счетчики вихревые	47361-11	Счетчики крыльчатые холодной	26343-08
погружные V-Bar		и горячей воды СКБ	
Расходомеры-счетчики вихревые	47359-11	Расходомеры-счетчики	32718-12
PhD		вис.мир	
Счетчики холодной и горячей воды	19727-03	Расходомеры-счетчики	47002 11
ETW/ETK водоучет	19/2/-03	вихревые Hydro-Flow	47983-11
Счетчики холодной и горячей воды	48241-11	Счетчики холодной и горячей	48242-11
крыльчатые одноструйные ЕТ		воды крыльчатые	
		многоструйные М	
Счетчики холодной и горячей воды	19728-03	Счетчики холодной и горячей	51794-12
MTK/MNK/MTW водоучет		воды ВСХ, ВСХд, ВСГ, ВСГд,	
		BCT	
Счетчики воды крыльчатые	55115-13		
ВСХН, ВСХНД, ВСГНД, ВСТН			

Таблица 2 - Типы применяемых преобразователей давления

Тип датчика давления	Номер в	Тип датчика давления	Номер в Госреестре
Датчики давления	Госреестре 49083-12	Датчики давления КУРАНТ	42840-09
MT100			
Преобразователи давления измерительные MBS1700 и MBS1750	45082-10	Датчики избыточного давления МИДА-ДИ-12П	17635-03
Преобразователи измерительные Сапфир-22МТ	42636-09	Преобразователи давления малогабаритные КОРУНД	14446
Датчики давления DMK, DMP	44736-10	Датчики давления МС20	27229-11
Датчики давления Метран-55	18375-08	Преобразователи давления измерительные АИР-20/M2	46375-11
Датчики давления Метран-150	32854-13	Преобразователи давления измерительные АИР-10	31654-14
Датчики давления MT100M	46325-10	Преобразователи давления измерительные СДВ	28313-11

Таблица 3 - Типы применяемых термопреобразователей сопротивления

Тип термопреобразователя	Номер в	Тип термопреобразователя	Номер в
	Госреестре		Госреестре
Комплекты термометров		Комплекты термометров	
сопротивления из платины	46156-10	сопротивления из платины	39145-08
технических разностных	40130-10	технические разностные	37143-00
КТПТР-01; КТПТР-03,06,07,08		КТПТР-04, 05, 05/1	
Термометры сопротивления TC-Б-Р	43287-09	Термометры сопротивления ДТС	28354-10
Термометры сопротивления из платины технические ТПТ-15	39144-08	Термометры сопротивления TC 005	14763-14
Термометры сопротивления из платины технические ТПТ-1	46155-10	Преобразователи термоэлектрические ТП	18524-10
Термопреобразователи сопротивления ТСП-05	14456-13	Комплекты термопреобразователей сопротивления КТСМ, КТСП	38790-13
Комплекты термометров сопротивления платиновых КТС-Б	43096-09	Комплекты термопреобразователей сопротивления платиновых КСТВ	47133-11
Комплекты термопреобразователей сопротивления платиновые ТСПТК	21839-12	Термопреобразователи с унифицированным выходным сигналом ТСМУ 0104, ТСПУ 0104, ТХАУ 0104	29336-05
Термопреобразователи медные технические ТМТ	15422-06		

Теплосчетчики обеспечивают измерение, вычисление, индикацию и архивирование следующих параметров:

- среднечасовое и суммарное значение отпущенной (полученной) тепловой энергии по каждому (от одного до шестнадцати) источнику (потребителю) с учетом направления движения теплоносителя (при использовании электромагнитных преобразователей расхода);
- текущие и среднечасовые значения объемного (массового) расхода, температуры и давления теплоносителя по каждому трубопроводу, температуры наружного воздуха;
- суммарные объемы (массы) теплоносителя, протекшие в каждом трубопроводе по каждому направлению раздельно за все время работы (при использовании электромагнитных преобразователей расхода);
- времени наработки и простоя узла учета за каждый астрономический час и за все время работы;
 - -текущее астрономическое время и дату;
 - информацию о возникших в процессе работы нештатных ситуациях.

Глубина архивов среднечасовой информации до трех лет. Сохранность информации при выключенном питании не менее 10 лет.

Условное обозначение

Теплосчетчик ВИС.Т2 $\underline{XX} - \underline{xx} - \underline{x} -$

1. Исполнение: ТС – теплосчетчик

ВС – расходомер-счетчик

- 2. Количество каналов измерения расхода электромагнитными преобразователями погружного типа (0-16)
- 3. Количество каналов измерения расхода электромагнитными преобразователями полнопроходного типа (0-16)
- 4. Количество каналов измерения расхода вихревого типа (0-16)
- 5. Количество каналов измерения расхода тахометрического типа (0 16)
- 6. Количество каналов измерения давления (0 16)
- 7. Количество каналов измерения температуры (0-16)
- 8. Количество тепловых систем или виртуальных приборов (0-16)
- 9. Наличие интерфейса RS485: 0 нет

1- есть

10. Наличие сменного модуля интерфейса: 0 – нет

1 – есть

11. Максимальная температура рабочей среды: 0 - +150°C

 $1 - +200^{\circ}C$

- 12. АС абразивостойкое исполнение первичных преобразователей расхода
 - Д приборы с переключением диапазонов измерения расхода
 - Е наличие Ethernet
 - Е1 наличие встроенного телефонного модема
 - E2 наличие GSM-модема
 - И приборы с электронным блоком в раздельном исполнении
 - К приборы с дублированием каналов измерения
 - М приборы с электронными блоками, установленными на первичных преобразователях расхода
 - Н приборы для рабочих сред с электропроводностью ниже $5x10^{-4}$ См/м
 - Н1 приборы для рабочих сред с повышенным осадкосодержанием
 - П приборы погружного типа с 3-мя преобразователями скорости
 - П2 приборы погружного типа с 2-мя преобразователями скорости
 - P(2)— работа в системах с изменением направления потока (номер трубопровода, по умолчанию все каналы)
 - С расширенный диапазон эксплуатационных характеристик электронного блока (от минус 50°С до плюс 55 °С) со стабилизацией температуры внутри корпуса электронного блока
 - Т наличие токового выходного сигнала о значении расхода
 - У наличие USB интерфейса
 - X наличие HART (только для модификации BC)
 - Ч наличие частотного выходного сигнала о значении расхода
- 13. Диапазон выходных токов (при наличии токового выхода): 0-5 мA;

0 - 20 MA;

4 - 20 MA.

14. Питание от источника постоянного тока с напряжением: 24 В

12 B

Программное обеспечение

Встроенное программное обеспечение (ПО) управляет процессом измерения, производит вычисления метрологических параметров, управляет интерфейсными функциями прибора.

Уровень защиты ПО в соответствии с Р 50.2.077-2014 - «Высокий».

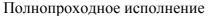
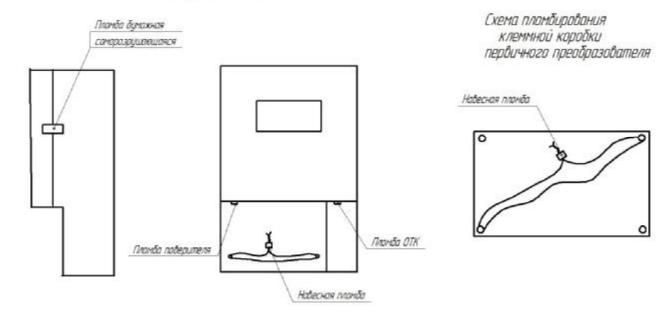

Конструкция СИ исключает возможность несанкционированного влияния на ПО СИ и измерительную информацию.

Таблица 4 – Идентификационные данные ПО

Идентификационные данные (признаки)	Значение		
Идентификационное наименование ПО	HC-A; HC-F; HC-M; HC-N		
Номер версии ПО	2.29-2.90		
Цифровой идентификатор ПО	0-65535		
Алгоритм вычисления цифрового	CRC-16		
идентификатора ПО			

Фотографии общего вида



Погружное исполнение

Схема мест пломбировки

Ехема пломбирования электронного блока

Метрологические и технические характеристики

Таблица 5	
Измеряемая среда	Теплофикационная, природная
	вода, питьевая вода по ГОСТ Р
	51232-98, технологические
	растворы, конденсат,
	хладагенты, суспензии,
	эмульсии, электропроводящие
	жидкости с удельной
	проводимостью от $3x10^{-6}$ до 10
	См/м.
Диаметры условного прохода полнопроходных	2,5; 4; 6; 10; 15; 25; 32; 40; 50; 65;
электромагнитных первичных преобразователей, мм	80; 100; 150; 200; 250; 300; 400;
	500; 600; 700; 800; 900; 1000;
	1100; 1200; 1300; 1400; 1500
Диапазон условных диаметров трубопроводов для	
погружных электромагнитных первичных преобразователей,	300 4000
MM	
Диапазон температур рабочей среды, °С	
-воды, конденсата, электропроводящей жидкости	0 +150 (0 +200)*
-хладагента	-50 +50 (-50 +200)*
Диапазон измерения разности температур теплоносителя, °С	1 199

Продолжение таблицы 5

1 ' '	
Пределы допускаемой относительной погрешности при	
измерении объемного расхода и объема с использованием	
штатных полнопроходных электромагнитных первичных	
преобразователей расхода, %, в диапазоне расходов:	
- от Gн до Gп	±2
- от	±0,6 (±0,2)*
Пределы допускаемой относительной погрешности при	
измерении объемного расхода и объема с использованием	
штатных погружных электромагнитных первичных	
преобразователей скорости, (три/два преобразователя), %, в	
диапазоне расходов:	
- от Gн до Gп	$\pm 2,5/\pm 3$
- от	$\pm 1,6 / \pm 2,0$
Пределы допускаемой относительной погрешности при	
измерении тепловой энергии в диапазоне расходов от Gп до	
Gв и разности температур ∆t, %	
Ду 2,5 - 1500 мм [Ду 300 - 4000 мм]	
1°C £ Dt< 2°C;	±6,0 [±7,0]
2°C £ Dt< 10°C;	±4,0 [±5,0]
10°C £ Dt< 20°C;	±2,5 [±3,6]
$20^{\circ}\text{C} \text{ £ Dt} \leq 199^{\circ}\text{C}$	±2,0 [±3,4]
Пределы допускаемой относительной погрешности при	
измерении тепловой энергии в диапазоне расходов от Gн до	
Gπ, %	
Ду 2,5 - 1500 мм	$\pm (2+4/\Delta t+0.01GB/G)$
Ду 300 - 4000 мм	$\pm (3+4/\Delta t+0.02GB/G)$
Пределы допускаемой относительной погрешности каналов	
преобразования электронным блоком частотно-импульсных	±0,1
сигналов тахометрических и вихревых преобразователей	±0,1
расхода при измерении объема, %	
Пределы допускаемой относительной погрешности	$\pm (1,3+1/\Delta t+0,005GB/G)$
электронного блока при измерении тепловой энергии, %	
Пределы допускаемой абсолютной погрешности при	$\pm (0,1+0,001x)$
измерении температуры t, °C, без учета [с учетом]	$[\pm (0.6+0.004x)]$
погрешности термопреобразователей, %	

Продолжение таблицы 5

продолжение таблицы з		
Пределы допускаемой приведенной погрешности при		
измерении давления без учета погрешности	$\pm 0,15$	
преобразователей давления, %		
Пределы допускаемой относительной погрешности	± 0.01	
измерения времени, %		
Максимальное давление рабочей среды, МПа	0,6; 1,0; 1,6; 2,5; 40*	
Напряжение питания, В		
-переменный ток	220 (+10/-15%)	
-постоянный ток	12; 24	
Частота, Гц.	50±1	
Диапазон температур окружающей среды, °С	+5 + 55	
	(-50 + 55)*	
Диапазон температур хранения и транспортирования, °С	-30 +55	
Диапазон относительной влажности окружающего	5 95	
воздуха, %		
Выходные сигналы:		
-аналоговый, мА	$0 \dots 5 (0 \dots 20; 4 \dots 20)$	
-частотный, Гц	0 1000 (0 10000)	
Максимальная потребляемая мощность, не более, В:А	70	
Степень защиты		
-электронный блок	IP 40 (IP 65)*	
-первичные преобразователи	IP 65 (IP 67, IP 68)*	
Габаритные размеры электронного блока, не более, мм	350x380x155	
Масса электронного блока, не более, кг	8	
Средняя наработка на отказ, не менее, часов	100000	
Средний срок службы, не менее, лет	12	

^{*-}по заказу

Знак утверждения типа

наносится на титульный лист эксплуатационной документации типографским способом и на левой стороне лицевой панели электронного блока.

Комплектность средства измерений

Таблица 6

Наименование	Обозначение	Кол-во	Примечание
1.Теплосчетчик ВИС.Т2		1	По заказу
2. Руководство по эксплуатации	ВАУМ.407312.114 РЭ1	1	В соответствии с
	ВАУМ.407312.114 РЭ2	1	заказом
3.Паспорт	ВАУМ.407312.114 ПС1	1	В соответствии с
	ВАУМ.407312.114 ПС2		заказом
4.Методика поверки	ВАУМ.407312.114 МП1	1	В соответствии с
	ВАУМ.407312.114 МП2		заказом

Поверка

осуществляется по документам «ВАУМ.407312.114 МП1 (полнопроходное исполнение). Методика поверки» и «ВАУМ.407312.114 МП2 (погружное исполнение). Методика поверки», утвержденными Φ ГУП «ВНИИМС» 17.06.2014 г.

Основное поверочное оборудование:

- установка для поверки расходомеров и счетчиков жидкости ОПУС-01, диапазон расхода от 0.025 до $125 \, \text{m}^3$ /ч, с погрешностью $\pm 0.2\%$ при измерении расхода и объема методом сличения, с погрешностью $\pm 0.07\%$ при измерении массы и массового расхода весовым методом;
- установка для поверки расходомеров и счетчиков жидкости ОПУС-02-600, диапазон расхода от 0,25 до 640 м 3 /ч, с погрешностью \pm 0,2% при измерении расхода и объема методом сличения;
- поверочная имитационная установка ПОТОК-Т, скорость потока от 0 до 10 м/с, с погрешностью $\pm 0.2\%$;
- поверочная установка METROST-112-100/160T, диапазон расхода от 0.02 до $200 \,\mathrm{m}^3/\mathrm{q}$, с погрешностью $\pm 0.1\%$.
- автоматизированная поверочная установка УПСЖ 200, объемный расход от 0,01 до $200 \text{ m}^3/\text{ч}$, с погрешностью $\pm 0,05\%$ (весовой метод);
 - мегомметр М1101М, диапазон измерения 0 500 МОм при 500 В;
 - магазин сопротивлений P3026, пределы отклонения сопротивления ±0,005%;
- нутромер микрометрический HM 1250, диапазон измерений от 150 до 1250 мм, погрешность ± 0.02 мм;
- -нутромер микрометрический HM 4000 диапазон измерений от 1250 до 4000 мм, погрешность ± 0.06 мм.

Сведения о методиках (методах) измерений

изложены в документах ВАУМ.407312.114РЭ1 «Теплосчетчики ВИС.Т2 (полнопроходное исполнение). Руководство по эксплуатации» и ВАУМ.407312.114РЭ2 «Теплосчетчики ВИС.Т2 (погружное исполнение). Руководство по эксплуатации».

Нормативные и технические документы, устанавливающие требования к теплосчетчикам ВИС.T2

- 1. ГОСТ Р 52931-2008 «Приборы контроля и регулирования технологических процессов. Общие условия».
- 2. ГОСТ 28723-90 «Расходомеры скоростные, электромагнитные и вихревые. Общие технические требования и методы испытаний».
- 3. ГОСТ Р 51522-99 «Совместимость технических средств электромагнитная. Электрическое оборудование для измерения, управления и лабораторного применения. Требования и методы испытаний».
- 4. ГОСТ Р 51649-2000 «Теплосчетчики для водяных систем теплоснабжения. Общие технические условия»
- 5. ГОСТ Р ЕН 1434-1-2011 «Теплосчетчики. Часть 1. Общие требования».
- 6. ТУ 4218-001-45859091-04. «Теплосчетчики ВИС.Т. Технические условия»

Изготовители

Общество с ограниченной ответственностью «НПО «ТЕПЛОВИЗОР» (ООО «НПО «ТЕПЛОВИЗОР»)

109428, г. Москва, Рязанский проспект, дом 8А, строение 9

ИНН 7721302674

тел/факс(495)231-45-84, (495) 730-47-44,

E-mail: <u>mail@teplovizor.ru</u> http://www.teplovizor.ru

Общество с ограниченной ответственностью «Тепловизор Пром» (ООО «Тепловизор Пром»)

109428, г. Москва, Рязанский проспект, дом 8А, строение 9

ИНН 7721281336

тел/факс(495)730-47-44,

E-mail: prom@teplovizor.ru http://www.teplovizor.ru

Испытательный центр

Федеральное государственное унитарное предприятие «Всероссийский научноисследовательский институт метрологической службы» (ФГУП «ВНИИМС»)

Адрес: 119361, г. Москва, ул. Озерная, д.46

Тел./факс: (495)437-55-77 / 437-56-66 E-mail: office@vniims.ru, www.vniims.ru

Аттестат аккредитации ФГУП «ВНИИМС» по проведению испытаний средств измерений в

целях утверждения типа № 30004-13 от 26.07.2013 г.

Заместитель Руководителя Федерального агентства по техническому регулированию и метрологии

С.С. Голубев

М.п. «___»____ 2015 г.