ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

NTP-серверы ГЛОНАСС/GPS «DeNTP-GG»

Назначение средства измерений

NTP-серверы ГЛОНАСС/GPS «DeNTP-GG» предназначены для воспроизведения единиц времени и шкалы времени, синхронизированных по сигналам от глобальных навигационных спутниковых систем ГЛОНАСС/GPS или от других NTP-серверов (в том числе от NTP-серверов ГЛОНАСС/GPS «DeNTP-GG») и выдачи информации о времени через порт Ethernet по протоколу NTP, SNTP и через выход 1PPS.

Описание средства измерений

Принцип действия NTP-серверов ГЛОНАСС/GPS «DeNTP-GG» основан на приеме сигналов от глобальных навигационных спутниковых систем ГЛОНАСС/GPS, их обработке и формировании выходных сигналов: 1 Гц (1PPS), синхронизированных со шкалой времени UTC(SU), а также выходных данных о времени с метками времени национальной шкалы времени UTC(SU) в формате NTP, SNTP.

NTP-серверы ГЛОНАСС/GPS «DeNTP-GG» являются базовым элементом для построения систем синхронизации времени, обеспечивает точное единое время абонентов сети по шкале времени UTC(SU), обеспечивает регистрацию даты, времени событий и данных в автоматизированных системах.

Внешний вид NTP-сервера ГЛОНАСС/GPS «DeNTP-GG» и схема пломбировки от несанкционированного доступа приведены на рисунке 1.

Место пломбировки от несанкционированного доступа

Место нанесения знака утверждения типа

Рисунок 1 - Внешний вид NTP-сервера ГЛОНАСС/GPS «DeNTP-GG» и схема пломбировки от несанкционированного доступа

Программное обеспечение

В NTP-серверах ГЛОНАСС/GPS «DeNTP-GG» используется программное обеспечение (Π O) SCADA SyTrack, в частности Π O «SyTrack-PLC» SYNTIME.

Встроенное ΠO «SyTrack-PLC» SYNTIME, являющееся метрологически значимым, заносится во флэш-память NTP-сервера $\Gamma \Pi O HACC/GPS$ «DeNTP-GG» при выпуске из производства и не может быть изменено пользователем. Идентификационные данные ΠO приведены в таблице 1.

Таблица 1.

Идентификационное наименование ПО	Программное обеспечение
	«SyTrack-PLC» SYNTIME
Номер версии (идентификационный номер) ПО	Не ниже 4.5
Цифровой идентификатор ПО	-
Алгоритм вычисления цифрового идентификатора ПО	-

Конструкция СИ исключает возможность несанкционированного влияния на встроенное ПО СИ и измерительную информацию. Уровень защиты встроенного программного обеспечения соответствует уровню «высокий» по Р 50.2.077-2014.

Метрологические и технические характеристики

Метрологические и технические характеристики DeNTP-GG приведены в таблице 2. Таблица 2

raomina 2	_
Наименование характеристики	Значение характеристики
Параметры импульсного сигнала отрицательной полярности 1 Гц	
при подключенном питании 12 В:	
- логическая 1, В, не более	0,4
- логический 0, В, не более	12
- длительность импульса, мс, не более	5
- время нарастания переднего фронта, мкс, не более	10
Пределы допускаемой абсолютной погрешности привязки перед-	
него фронта выходного импульса частотой 1 Гц (по уровню 0,5) к	
шкале времени UTC(SU) в режиме синхронизации по сигналам	
ГНСС ГЛОНАСС/GPS, мкс	± 10
Пределы допускаемой абсолютной погрешности привязки шкалы	
времени относительно шкалы времени UTC(SU) по протоколу	
NTP через интерфейс Ethernet, мкс	± 200
Напряжение питания от сети постоянного тока, В	от 9 до 30
Потребляемая мощность, В-А, не более	6
Габаритные размеры (длина × ширина × высота), мм, не более	$110\times135\times55$
Масса, кг, не более	1
Рабочие условия эксплуатации:	
- температура окружающего воздуха, °С	от минус 40 до 70
- относительная влажность при температуре воздуха 25°C, %, не	
более	98

Знак утверждения типа

наносится типографским способом на титульный лист эксплуатационной документации и на лицевую панель DeNTP-GG в виде наклейки или любым технологическим способом, обеспечивающим четкое изображение знака, его стойкость к внешним воздействующим факторам, а также сохранность его изображения в течение всего установленного срока службы DeNTP-GG.

Комплектность средства измерений

В комплект поставки входят:

- NTP-сервер ГЛОНАСС/GPS «DeNTP-GG»;
- антенна ГЛОНАСС/GPS (по заказу);
- минипульт (по заказу);
- блок питания (по заказу);
- паспорт;
- руководство по эксплуатации;
- методика поверки.

Поверка

осуществляется по документу ДПАВ.421457.016МП «Инструкция. NTP-серверы ГЛОНАСС/GPS «DeNTP-GG». Методика поверки», утвержденному первым заместителем генерального директора — заместителем по научной работе Φ ГУП «ВНИИ Φ ТРИ» в декабре 2014 г.

Основные средства поверки:

- аппаратура навигационно-временная потребителей глобальных навигационных спутниковых систем ГЛОНАСС/GPS NV08C (рег. № 52614-13): среднее квадратическое от-клонение случайной составляющей инструментальной погрешности синхронизации ШВ к ШВ UTC(SU) 15 нс;
- частотомер универсальный CNT–90 (рег. № 41567-09): диапазон измеряемых частот от 0,001 Γ ц до 300 M Γ ц, пределы допускаемой относительной погрешности по частоте внутреннего опорного генератора $\pm 5\cdot10^{-6}$;
- осциллограф цифровой DSO-X3012A (рег. № 48998-12): диапазон измеряемых частот до 1 ГГц; диапазон измерения напряжения \pm 5 B, пределы допускаемой абсолютной погрешности измерения напряжения \pm 0,02·8[дел] ·К_{откл}[В/дел];

Сведения о методиках (методах) измерений

NTP-сервер ГЛОНАСС/GPS «DeNTP-GG». Руководство по эксплуатации ДПАВ.421457.016РЭ.

Нормативные и технические документы, устанавливающие требования к NTP-серверам ГЛОНАСС/GPS «DeNTP-GG»

ГОСТ 8.129-2013. «ГСИ. Государственная поверочная схема для средств измерений времени и частоты».

Техническая документация изготовителя.

Изготовитель

Общество с ограниченной ответственностью «Компания ДЭП» (ООО «Компания ДЭП»),

г. Москва

Юридический адрес: 127055, г. Москва, пер. Порядковый, д.21;

Почтовый адрес: 117545, г. Москва, ул. Подольских Курсантов, д. 3, стр. 8;

тел./факс: (495) 995-00-12

e-mail: <u>mail@dep.ru</u> ИНН 7706691024

Испытательный центр

Федеральное государственное унитарное предприятие «Всероссийский научноисследовательский институт физико-технических и радиотехнических измерений» (ФГУП «ВНИИФТРИ»).

Юридический адрес: 141570, Московская обл., Солнечногорский р-н, городское поселение Менделеево, Главный лабораторный корпус.

Почтовый адрес: 141570, Московская обл., Солнечногорский р-н, п/о Менделеево

Телефон: +7(495)526-63-00, факс: +7(495)526-63-00.

E-mail: office@vniiftri.ru

Аттестат аккредитации Φ ГУП «ВНИИФТРИ» по проведению испытаний средств измерений в целях утверждения типа № 30002-13 от 07.10.2013 г.

Заместитель	
Руководителя Федерального агентства по техническом	му
регулированию и метрологии	А.В. Кулешов
	«»2015 г
M	.п.