ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Контроллеры измерительные R-AT-MM

Назначение средства измерений

Контроллеры измерительные R-AT-MM (далее - контроллеры) предназначены для измерения и преобразования сигналов от первичных средств измерений (датчиков расхода, температуры других измерительных преобразователей), напряжения унифицированный выходной сигнал постоянного активного сопротивления или частоты, в значения физических величин (расход, давление, температура, масса и другие), а также для передачи полученных значений по интерфейсу RS-485 на программируемые логические контроллеры или персональные компьютеры. Контроллеры также осуществляют прием и обработку цифровых сигналов по интерфейсу RS-485, вычисление и формирование выходных сигналов (цифровых и аналоговых) для автоматизированного управления в реальном масштабе времени технологическими процессами и объектами.

Описание средства измерений

Принцип работы контроллеров заключается в преобразовании модулями ввода входных аналоговых и дискретных сигналов в цифровую форму. Контроллер обрабатывает цифровые данные в соответствии с заданными алгоритмами и передает результаты в выходные модули, где формируются выходные сигналы.

Контроллеры представляют собой модульные системы, состоящие из процессорных модулей, коммуникационных модулей, измерительных каналов на основе модулей ввода/вывода аналоговых и дискретных сигналов. Для организации распределенного сбора данных и управления могут использоваться сети различного типа.

Контроллеры выпускаются с различным количеством установленных модулей ввода/вывода и функциональной нагрузкой. Монтаж контроллеров выполняется с использованием DIN-рейки.

Для исключения возможности преднамеренных и непреднамеренных изменений измерительной информации контроллеры пломбируются, изготовитель наносит наклейки и пломбы с целью исключить возможность несанкционированной разборки контроллера и вмешательства в его работу.

Внешний вид модулей приведен на рисунках 1-12.

Рисунок 1 — модуль аналогового ввода (R-AT-MM/4AI)

Рисунок 2 – модуль аналогового вывода (R-AT-MM/4AOI)

Рисунок 3 — модуль дискретного ввода (R-AT-MM/4DI)

Рисунок 5 – модуль дискретного вывода (R-AT-MM/4PLR)

Рисунок 7 – модуль силовых реле (R-AT-MM/PR-4)

Рисунок 4 – модуль дискретного вывода (R-AT-MM/4DO)

Рисунок 6 — модуль опторазвязки (R-AT-MM/OS)

Рисунок 8 – барьер искрозащиты (R-AT-MM/IS)

Рисунок 9 – модуль вычислительный (R-AT-MM/RTU)

Рисунок 10 – модуль вычислительный (R-AT-MM/RTU32)

Рисунок 11 – модуль вычислительный (R-AT-MM/ARM)

Рисунок 12 – терминальная панель (R-AT-MM/VFD)

Программное обеспечение

Контроллер является программноуправляемым устройством, реализующим обработку входных данных (измеренных значений) в соответствии с заложенными алгоритмами, которые реализованы во встроенном программном обеспечении (ПО).

ПО устанавливается в энергонезависимую память контроллера при изготовлении, в процессе эксплуатации данное ПО не может быть модифицировано, загружено или прочитано через какой-либо интерфейс.

Идентификационные данные ПО приведены в таблице 1. Таблица 1 – Идентификационные данные программного обеспечения

Идентификационные данные (признаки)	Значение
1	2
Наименование ПО	Система измерений количества жидкости и газа R-AT-MM
Идентификационное наименование ПО	DebitCalc

1	2
Номер версии ПО (идентификационный номер)	от V0.1
Цифровой идентификатор ПО (контрольная сумма исполняемого кода)	-
Алгоритм вычисления цифрового идентификатора ПО	-

Пределы допускаемой погрешности контроллеров установлены с учетом влияния ПО на метрологические характеристики.

Конструкция контроллера исключает возможность несанкционированного влияния на ПО и измерительную информацию. Уровень защиты ПО и измерительной информации от преднамеренных и непреднамеренных изменений в соответствии с Р 50.2.077-2014 - высокий.

Метрологические и технические характеристики

Основные метрологические и технические характеристики контроллеров приведены в таблицах 2 и 3.

Таблица 2 – Модули ввода аналоговых сигналов

Вид входного сигнала	Диапазоны входного сигнала	Пределы допускаемой
Вид входного сигнала	дианазоны входного сигназа	погрешности
1	2	3
Сина постояниого тока	от 0 до 20 мА	± 0,1 %
Сила постоянного тока	от 4 до 20 мА	± 0,1 %
	от 0 до 5 В	
Напряжение	от 0 до 10 В	. 0.05.0/
постоянного тока	от минус 5 до 5 В	$\pm~0.05~\%$
	от минус 10 до 10 В	
Импульсный сигнал	om 0.01 Ev. vo. 5 MEv.	+ 0.01 % ye 10000 yearyyy con
(счет количества импульсов)	от 0,01 Гц до 5 МГц	\pm 0,01 % на 10000 импульсов
Температура		
(сигналы от		
термопреобразователей		
сопротивления)		
Pt100 (α=0,00385)	от минус 200 до 850 °C	
100 Π (α=0,00391)	от минус 200 до 850 °C	± 0,25 %
100 M (α=0,00428)	от минус 180 до 200 °C	
100 H (α=0,00617)	от минус 60 до 180 °C	
Температура,		
(сигналы от термопар)		
В	от 0 до 1820 °С	
E	от минус 270 до 1000 °C	. 0.5.0/
J	от минус 210 до 1200 °C	± 0,5 %
K	от минус 270 до 1372 °C	
N	от минус 270 до 1300°C	
R	от минус 50 до 1768°C	

Продолжение таблицы 2

1	2	3
S	от минус 50 до 1768°C	
T	от минус 270 до 400 °C	
A-1	от 0 до 2500 °С	
A-2	от 0 до 1800 °С	± 0,5 %
A-3	от 0 до 1800 °С	
L	от минус 200 до 800 °C	
M	от минус 200 до 100 °C	

Таблица 3 – Модули вывода аналоговых сигналов.

Dun privonico auticiono	Диапазоны выходного	Пределы допускаемой
Вид выходного сигнала	сигнала	погрешности
Сууга на ададуууара дауга	от 0 до 20 мА	10.10/
Сила постоянного тока	от 4 до 20 мА	±0,1%
	от 0 до 5 В	
Напряжение	от 0 до 10 В	±0,05%
постоянного тока	от минус 5 до 5 В	±0,03%
	от минус 10 до 10 В	

Примечание: указанная в таблицах 2 и 3 погрешность в % является приведенной к диапазону входного (выходного) сигнала

Рабочие условия эксплуатации контроллеров	
Диапазон температуры окружающей среды, °С	от минус 40 до плюс 60
Относительная влажность воздуха, % при 25 °C	до 95
Диапазон атмосферного давления, кПа	от 84 до 106,7
Напряжение питания (постоянное), В	от 18 до 24
Ток потребления, мА, не более	100
Габаритные размеры (ДхШхВ), мм, не более	170x120x40
Масса, кг, не более	0,5
Средний срок службы, лет	10

Знак утверждения типа

наносят на титульные листы эксплуатационной документации типографским способом.

Комплектность средства измерений

В комплект поставки контроллера входят:

- контроллер измерительный R-AT-MM	1 шт.
- руководство по эксплуатации	1 экз.
- методика поверки	1 экз.

Поверка

осуществляется в соответствии с МИ 2539-99 «ГСИ. Измерительные каналы контроллеров, измерительно-вычислительных, управляющих, программно-технических комплексов. Методика поверки».

Основные средства поверки:

Калибратор универсальный Н4-7 в режимах:

- воспроизведение напряжения постоянного тока (предел 20 B, \pm 0,001 %);
- воспроизведение силы постоянного тока (предел 20 мA, \pm 0,005 %);

Генератор импульсов точной амплитуды Г5-75 (период повторения импульсов T от $0.1 \cdot 10^{-6}$ до 9.99 с, $\pm 1 \times 10^{-3}$ T);

Частотомер Ч3-77 в режиме счета импульсов.

Магазин сопротивления P4831 (диапазон от 0 до 100 кОм, \pm 0,02 %);

Мультиметр В7-64/1 в режиме:

- измерение напряжения постоянного тока (предел 12,5 B, \pm 0,004 %).

Сведения о методиках (методах) измерений

изложены в документе «Контроллеры измерительные R-AT-MM. Руководство по эксплуатации».

Нормативные документы, устанавливающие требования к контроллерам измерительным R-AT-MM

- 1 ГОСТ 8.129-2013 «ГСИ. Государственная поверочная схема для средств измерений времени и частоты».
- 2 ГОСТ 8.022-91 «ГСИ. Государственный первичный эталон и государственная поверочная схема для средств измерений силы постоянного электрического тока в диапазоне $1 \cdot 10^{-16} \dots 30$ А».
- 3 ГОСТ 8.027-2001 «ГСИ. Государственная поверочная схема для средств измерений постоянного электрического напряжения и электродвижущей силы».
- 4 ГОСТ 22261-94 «Средства измерений электрических и магнитных величин. Общие технические условия».
 - 5 Технические условия ТУ 4220-031-95959685-2015.

Изготовитель

ООО «Аргоси Аналитика», г. Москва, ИНН 7702606130.

Адрес: 115054, Москва, Стремянный пер., д. 38;

тел. (495) 544-11-35, факс 544-11-36.

Испытательный центр

Государственный центр испытаний средств измерений ЗАО КИП «МЦЭ»

125424, РФ, г. Москва, Волоколамское шоссе, 88, стр. 8

тел: +7 (495) 491 78 12, +7 (495) 491 86 55

e-mail: sittek@mail.ru, kip-mce@nm.ru

Аттестат аккредитации ГЦИ СИ ЗАО КИП «МЦЭ» по проведению испытаний средств измерений в целях утверждения типа № 30092-10 от 01.05.2010 г.

Заместитель Руководителя Федерального агентства по техническому регулированию и метрологии

С.С. Голубев

М.п. «___»____2015 г.