ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Газоанализаторы ОМА модификаций ОМА-300, ОМА-300 H₂S, TLG-837

Назначение средства измерений

Газоанализаторы OMA модификаций OMA-300, OMA-300 H_2S , TLG-837 предназначены для автоматического непрерывного измерения:

- объемной доли компонентов, приведенных в таблице 2, в отходящих и технологических газах промышленных предприятий;
 - объемной доли сероводорода и меркаптанов в газовой среде нефтепродуктов;
 - объемной доли сероводорода в подготовленной пробе воды.

Описание средства измерений

Принцип действия газоанализаторов – спектрофотометрический; анализ основан на избирательном поглощении монохроматического света молекулами анализируемого вещества в ультрафиолетовой, видимой и ближней инфракрасной областях спектра.

Газоанализаторы OMA (далее – газоанализаторы) представляют собой стационарные автоматические приборы непрерывного действия, имеют 3 модификации: OMA-300, OMA-300 H_2S и TLG-837.

Газоанализаторы модификации: ОМА-300 и ОМА-300 H_2S состоят из отдельно смонтированных в формате шкафов двух блоков: пробоподготовки и измерительного. В блоке пробоподготовки установлена проточная кювета, соединенная с измерительным блоком при помощи оптических волоконных кабелей.

Блок пробоподготовки используется при анализе технологических жидких проб, содержащих сероводород и меркаптаны. Проба при помощи насоса поступает на абсорбционную термостатируемую колонку (нагрев до 60 °C), через которую пропускается азот. В колонке происходит разделение жидкой фазы (технологической жидкости) и серосодержащих соединений, перешедших в паровую фазу. Поток газа-носителя (азота), проходящий через колонку, экстрагирует сероводород и меркаптаны из нагретой жидкой фазы. Полученная газовая смесь поступает в измерительную кювету. При анализе газовых проб их подача в измерительную ячейку осуществляется по газовой линии блока. Для отбора проб используются зонды.

Газоанализатор модификации TLG-837, состоящий из измерительного блока и проточной кюветы, оснащен зондом с влагоуловителем, используемым при анализе содержаний H_2S и SO_2 в отходящих газах. Зонд предназначен для отбора проб газа и удаления из нее (конденсация при охлаждении) элементарной серы, влияющей на результаты измерений H_2S и SO_2 . Проба подается в измерительную кювету с помощью эжектора.

Анализируемая газовая смесь может содержать один или несколько определяемых компонентов, газоанализаторы обеспечивают раздельное определение сероводорода и меркаптанов, а также сероводорода и диоксида серы при их совместном присутствии.

В измерительных блоках газоанализаторов находятся: источники питания, компьютер с ЖК дисплеем и спектрофотометр с диодной матрицей UV-VIS-NIR, постоянно измеряющий спектры поглощения анализируемой пробы. В базе данных хранятся метод вычисления, диапазоны длин волн и название анализируемого вещества. На дисплее информация выводится в текстовом, цифровом (концентрация компонентов) и графическом виде (спектры поглощения).

Газоанализаторы имеют следующие выходные сигналы:

- аналоговые выходы по току (4-20) мА,
- блок выходного реле 2 канала.

Взаимодействие с компьютером осуществляется по коммуникационному протоколу Ethernet ModBus TCP/IP, он подключается через разъем RJ45 с использованием сетевого кабеля.

Внешний вид газоанализаторов ОМА приведен на рисунках 1-2.

Рис. 1 - Внешний вид измерительного блока и проточной ячейки газоанализатора ОМА модификаций ОМА-300, ОМА-300 H_2S .

Рис. 2 - Внешний вид измерительного блока и проточной ячейки газоанализатора модификации TLG-837.

Программное обеспечение

Газоанализаторы имеют встроенное программное обеспечение (ПО), состоящее из двух частей:

- Eclipse Process Online NOVA II;
- Eclipse Process Offline NOVA II.

Функции ПО Eclipse Process Online NOVA II:

- расчет содержания определяемого компонента,
- отображение результатов измерений на ЖКИ дисплее анализатора;
- передачу результатов измерений по интерфейсу связи с ПК.

Функции ПО Eclipse Process Offline NOVA II:

- контроль целостности программных кодов ПО, настроечных и калибровочных констант;
- контроль общих неисправностей (связь, конфигурация);
- контроль внешней связи (RS232, Modbus RTU, Ethernet).

На разные модели газоанализаторов устанавливают разные версии ПО.

Газоанализаторы имеют защиту встроенного программного обеспечения от преднамерен-

ных или непреднамеренных изменений. Уровень защиты - средний по Р 50.2.077—2014. Влияние встроенного ПО учтено при нормировании метрологических характеристик. Идентификационные данные программного обеспечения приведены в таблице 1.

Таблица 1

Идентификацион-	Значение				
ные данные (при- знаки)		A-300, 300 H ₂ S	TLG-837		
Идентификационное наименование ПО	Eclipse Process Online NOVA II	Eclipse Process Offline NOVA II	Eclipse Process Online NOVA II	Eclipse Process Offline NOVA II	
Номер версии (идентификационный номер)*ПО	5.8	5.8	1.43	1.43	
Цифровой идентификатор ПО	768a6d8f2ff4e5ff2 19256d5d9323c98 MD5	a69ff070a4936c02a 30e722fdd59e7bd MD5	9a0bb10e473bd7b7 9519c3d49257b2f0 MD5	76c15678485eab 60b372215c73c9 d979 MD5	

Примечание:

- 1. *Номер версии (идентификационный номер) программного обеспечения должен быть не ниже указанного в таблице.
- 2. Значение контрольной суммы, указанное в таблице, относится только к файлам встроенного ΠO указанной версии.

Метрологические и технические характеристики

1. Диапазоны измерений и пределы допускаемой основной погрешности приведены в таблице 2.

Таблица 2

Модификация газоанализато- ров	Определяемые ком- поненты	Диапазоны измерений объемной доли		Пределы допускаемой основной приведенной
		млн ⁻¹	% (об.)	погрешности, ү, %
1	2	3	4	5
ОМА-300 H_2S (для газов, извлекаемых из жидкости)	Сероводород* Н₂S	0 – 10	_	± 15
		0 – 20	_	± 15
		0 - 100	_	± 15
		0 – 1000	_	± 15
		0 – 4000	_	± 15
ОМА-300 (для газов, извлекаемых из жидкости)	Метилмеркаптан* Этилмеркаптан*	0 – 50	_	± 15
		0 - 100	ı	± 15
		0 - 1000	ı	± 10
		_	0 – 1	± 8
	Пропилмеркаптан*, Бутилмеркаптан*	0 – 50	_	± 15

Продолжение таблицы 2

<u> 1</u>	2	3	4	5
		0 – 10	_	± 8
	Сероводород	0 – 20	_	± 8
		0 – 100	_	± 6
	H_2S	0 – 1000	_	± 6
		_	0 - 1	± 4
		_	0 – 100	± 4
		0 - 50	_	± 15
	Метилмеркаптан	0 - 100	_	± 15
	Этилмеркаптан	0 - 1000	_	± 10
		_	0 – 1	± 6
	Пропилмеркаптан*, Бутилмеркаптан*	0 – 50	-	± 15
		0 - 20	_	± 8
	Пууруулуу доруу	0 - 100	_	± 8
	Диоксид серы SO ₂	0 – 1000	_	± 8
		_	0 –1	± 4
OMA-300		_	0 – 20	± 4
	Сопоскиот уппорода	0 - 300	_	± 15
	Сероокись углерода COS	0 - 1000	_	± 10
		_	0 – 1	± 6
		0 - 200	_	± 15
	Сероуглерод CS_2	0 - 2000	_	± 10
		-	0 – 1	± 6
		0 - 300	_	± 15
	Хлор	0 – 1000	-	± 10
	CI ₂	-	0 - 1	± 8
		_	0 – 50	± 5
	Аммиак NH ₃	0 – 10	-	± 15
		0 – 300	-	± 8
		0 – 1000	_	± 8
		-	0 – 1	± 6
		_	0 – 50	± 4

Продолжение таблицы 2

1	2	3	4	5
TLG-837	Сероводород H_2S	_	0 - 2	± 4
		_	0 – 10	± 4
	Диоксид	_	0 – 1	± 4
	серы ${ m SO}_2$	-	0 – 10	± 4
	Сероокись углерода COS	0 - 2000	_	± 10
		ı	0 – 1	± 6
	Сероуглерод CS ₂	0 – 2000	_	± 10
		_	0 – 1	± 6

Примечания:

- 1 * сероводород и меркаптаны, извлекаемые из жидкости.
- 2 При контроле отходящих газов пересчет объемной доли (млн $^{-1}$) в массовую концентрацию компонента (мг/м 3) проводится с приведением к температуре 0° С и давлению 760 мм рт. ст. в соответствии с требованиями РД 52.04.186-89.
- 3 **Диапазон измерений и определяемые компоненты определяются при заказе и могут составлять от 1 до 50 % (об.). При заказе диапазона измерений с верхним значением, отличным от приведенных в таблице, выбирают диапазон измерений, включающий это верхнее значение.
- 4 Пределы допускаемой основной приведенной погрешности для меркаптанов нормированы в присутствии в анализируемой среде только одно определяемого компонента.
 - 2 Номинальная цена единицы наименьшего разряда, млн⁻¹ (% об.): 0,01; 0,1; 1.
- 3 Предел допускаемой вариации показаний, 0,5, в долях от пределов допускаемой основной погрешности.
 - 4 Время прогрева и выхода на рабочий режим не более 60 мин.
- 5 Предел допускаемого времени установления показаний $T_{0,9}$: при анализе газов 4 мин; при анализе паровой фазы жидкостей 10 мин.
- 6 Предел допускаемого изменения выходного сигнала за 24 ч непрерывной работы, в долях от пределов допускаемой основной погрешности: 0,5.
- 7 Пределы допускаемой дополнительной погрешности от влияния изменения температуры окружающей среды на каждые $10~^{\circ}\mathrm{C}$ от номинального значения $20~^{\circ}\mathrm{C}$ в рабочих условиях, в долях от предела основной допускаемой погрешности: ± 0.2 (имеется термокомпенсация).
 - 8 Напряжение питания от сети переменного тока частотой (50±1) Гц: (230±23) В.
- 9 Потребляемая мощность не более: 600 В \square Дизмерительный блок)., 2000 В \square Дблок пробоподготовки).
- 10 Габаритные размеры измерительного блока газоанализатора, не более: длина 610 мм, ширина 587 мм, высота 314 мм; блока пробоподготовки, не более: длина 500 мм, ширина 1200 мм, высота 1860 мм.
- 11 Масса измерительных блоков газоанализаторов, не более 90 кг; масса зонда, не более 14 кг; блока пробоподготовки, не более 250 кг.
 - 12 Средняя наработка на отказ (при доверительной вероятности Р=0,95): 24000 часов.
 - 13 Срок службы, не менее: 10 лет.
 - 14 Условия эксплуатации:
 - диапазон температуры окружающей среды: от 0 °C до 35 °C,

(с дополнительным контролем температуры от минус 20 °C до 55 °C);

- диапазон относительной влажности (без конденсации влаги) до 95 %;
- диапазон атмосферного давления от 84 -106,7 кПа.
- 15 Параметры анализируемой пробы:
- температура пробы при использовании зонда от минус 20 °C до 150 °C.

Знак утверждения типа

наносится на переднюю панель газоанализатора и на титульный лист Руководства по эксплуатации.

Комплектность средства измерений

В комплект поставки входит:

1 Газоанализатор*1 компл.2 Руководство по эксплуатации1 экз.3 Методика поверки МП-242-1832-20151 экз.

Примечание: *Модификация определяется при заказе.

Поверка

осуществляется по документу МП-242-1832-2015 «Газоанализаторы ОМА модификаций ОМА-300, ОМА-300 H_2S , TLG-837. Методика поверки», утвержденному ГЦИ СИ ФГУП «ВНИИМ им. Д.И. Менделеева» 15 января 2015 г.

Основные средства поверки:

- стандартные образцы состава газовые смеси в баллонах под давлением по ТУ 6-16-2956-92;
- поверочный нулевой газ (ПНГ) азот газообразный в баллонах под давлением по Γ OCT 9293-74.

Сведения о методиках (методах) измерений

методика измерений приведена в документах:

- «Газоанализаторы OMA модификаций OMA-300, OMA-300 H_2S , TLG-837. Руководство по эксплуатации»;
- ГОСТ Р 54286-2010 «Топлива остаточные нефтяные жидкие. Метод определения сероводорода в паровой фазе».

Нормативные и технические документы, устанавливающие требования к газоанализаторам OMA модификаций OMA-300, OMA-300 H_2S , TLG-837.

- 1 ГОСТ 13320-81 «Газоанализаторы промышленные автоматические. Общие технические условия».
- 2. ГОСТ Р 50759-95 «Анализаторы газов для контроля промышленных и транспортных выбросов. Общие технические условия».
- $3~\Gamma OCT~8.578-2008~\Gamma CИ.~\Gamma$ осударственная поверочная схема для средств измерений содержания компонентов в газовых средах».
 - 4 Техническая документация фирмы изготовителя.

Изготовитель

Фирма «Applied Analytics, Inc», США

Адрес: 15 New England Executive Park Burlington, MA 01803, USA.

Телефон / факс: +1 (978) 287-42-22, +1 (978) 287-52-22

Заявитель

ООО «МС сервис» ИНН 7724660773

Адрес: 115477, г. Москва, ул. Кантемировская, д. 58, оф. 7031

Телефон / факс: +7 (495) 234-99-08, электронная почта: info@ms-service.su;

www.ms-service.su

Испытательный центр

ГЦИ СИ ФГУП «ВНИИМ им. Д.И. Менделеева»,

Адрес: 190005, Санкт-Петербург, Московский пр., д. 19, тел. (812) 251-76-01,

факс: (812) 713-01-14, электронная почта: <u>info@vniim.ru</u>

Аттестат аккредитации ГЦИ СИ ФГУП «ВНИИМ им. Д.И. Менделеева» по проведению испы-

таний средств измерений в целях утверждения типа N 30001-10 от 20.12.2010 г

Заместитель Руководителя Федерального агентства по техническому регулированию и метрологии

С.С. Голубев

М.п.	<u> </u>	»	_2015 1	Γ.
			_	