ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Преобразователи термоэлектрические с двумя термопарами модели 1159-11-009/6*4000

Назначение средства измерений

Преобразователи термоэлектрические с двумя термопарами модели 1159-11-009/6*4000 (далее по тексту — термопреобразователи или ТП) предназначены для измерения температуры корпуса регулирующего клапана в цилиндре высокого давления на ОАО «Мосэнерго» филиал ТЭЦ-20.

Описание средства измерений

Принцип работы термопреобразователей основан на термоэлектрическом эффекте - генерировании термоэлектродвижущей силы, возникающей из-за разности температур между тремя соединениями различных металлов или сплавов, образующих часть одной и той же цепи.

Термопреобразователи изготовлены на основе термопарного кабеля и конструктивно выполнены в виде измерительной вставки с двумя чувствительными элементами – термопарами (с изолированными рабочими спаями и минеральной (MgO) изоляцией термоэлектродов), подвижных монтажных элементов байонетного типа и удлинительных проводов.

Чертеж общего вида преобразователя представлен на рисунке 1.

Рис. 1 Внешний вид преобразователя термоэлектрического с двумя термопарами модели 1159-11-009/6*4000

Метрологические и технические характеристики

Рабочий диапазон измеряемых температур, пределы допускаемых отклонений ТЭДС от НСХ ТП по ГОСТ Р 8.585-2001 (МЭК 60584-2) в температурном эквиваленте приведены в таблице 1.

Таблица 1

Условное	Класс	Рабочий диапазон измеряемых	Пределы допускаемых отклонений
обозначение НСХ	допуска	температур, °С	ТЭДС от НСХ, °С
К	2	от 0 до плюс 333 св. плюс 333 до плюс 600	± 2,5 ± 0,0075·t

Длина монтажной части ТП, мм	600
Общая длина ТП, мм	4000
Диаметр монтажной части ТП, мм	6
Длина удлинительных проводов, мм	100
Электрическое сопротивление изоляции ТП при температуре	100
(плюс 25±10) °С и относительной влажности воздуха от 30 до	
80 %, МОм (при 100 В), не менее	

Рабочие условия эксплуатации ТП:

- температура окружающей среды, °С
- относительная влажность воздуха, %, не более

от минус 40 до плюс 80

до 95

2 шт.

Знак утверждения типа

наносится на титульный лист паспорта (в правом верхнем углу) методом штемпелевания.

Комплектность средства измерений

Преобразователи термоэлектрические с двумя термопарами модели 1159-11-009/6*4000

Паспорт 2 экз.

Поверка

осуществляется по ГОСТ 8.338-2002 «ГСИ. Преобразователи термоэлектрические. Методика поверки».

Основные средства поверки:

- термометр электронный лабораторный «ЛТ-300», диапазон измеряемых температур от минус 50 до плюс 300 °C, ПГ: ± 0.05 °C (-50...+199,99 °C), ± 0.2 °C (в остальном диапазоне);
- термостаты переливные прецизионные ТПП-1 модели ТПП-1.0, ТПП-1.1 с общим диапазоном воспроизводимых температур от минус 40 до плюс 300 °C и нестабильностью поддержания заданной температуры $\pm (0.004...0.02)$ °C.
- многоканальный прецизионный измеритель температуры МИТ 8.10 с пределами допускаемой основной абсолютной погрешности измерения напряжения $\pm (10^{-4} \cdot \text{U} + 1)$ мкВ, где U –измеряемое напряжение, мВ; сопротивления $\pm (10^{-5} \cdot \text{R} + 5 \cdot 10^{-4})$, где R измеряемое сопротивление, Ом.
- калибратор температуры серии RTC-R модели RTC-157B с STS, диапазон воспроизводимых температур от минус 45 до плюс 157 °C, пределы допускаемой абсолютной погрешности воспроизведения заданной температуры $\pm (0,04...0,10)$ °C, нестабильность поддержания заданной температуры: $\pm 0,005$ °C.
- калибратор температуры серии ATC-R модели ATC-650B, диапазон воспроизводимых температур от плюс 33 до плюс 650 °C, пределы допускаемой абсолютной погрешности воспроизведения заданной температуры ± 0.39 °C (по внутреннему термометру), нестабильность поддержания заданной температуры: ± 0.02 °C.

Примечания: при поверке допускается применение других средств измерений и вспомогательного оборудования, удовлетворяющих по точности и техническим характеристикам требованиям ГОСТ 8.338-2002.

Сведения о методиках (методах) измерений приведены в разделе 6 паспорта на преобразователи термоэлектрические с двумя термопарами модели 1159-11-009/6*4000.

Нормативные и технические документы, устанавливающие требования к преобразователям термоэлектрическим с двумя термопарами модели 1159-11-009/6*4000

- 1. ГОСТ Р 8.585-2001 ГСИ. Термопары. Номинальные статические характеристики преобразования.
- 2. Международный стандарт МЭК 60584-1. Термопары. Часть 1. Градуировочные таблицы.
- 3. Международный стандарт МЭК 60584-2. Термопары. Часть 2. Допуски.
- 4. ГОСТ 8.558-2009 «ГСИ. Государственная поверочная схема для средств измерений температуры».
- 5. ГОСТ 8.338-2002 ГСИ. Преобразователи термоэлектрические. Методика поверки.

Изготовитель

фирма «THERMO SENSOR GmbH», Германия 59199 Bönen GERMANY

Tel/Fax: +49 (0)2383 92102-0/+49 (0)2383 92102-99

info@thermo-sensor.de

Заявитель

ООО «Межрегионэнергострой» (ООО «МРЭС»), г. Москва

Адрес: 121059, г. Москва, ул. Брянская, д. 5

Тел.: (499) 550-08-99

Испытательный центр

Федеральное государственное унитарное предприятие «Всероссийский научноисследовательский институт метрологической службы» (ФГУП «ВНИИМС»)

Адрес: 119361, г. Москва, ул. Озерная, д. 46

Тел./факс: (495) 437-55-77/437-56-66 E-mail: office@vniims.ru, www.vniims.ru

Аттестат аккредитации $\overline{\Phi \Gamma Y \Pi}$ «ВНИИМС» по проведению испытаний средств измерений в

целях утверждения типа № 30004-13 от 26.07.2013 г.

Заместитель Руководителя Федерального агентства по техническому регулированию и метрологии

С.С. Голуб

М.п. «____» _____ 2015 г.