ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Система автоматизированная информационно-измерительная коммерческого учета электроэнергии (АИИС КУЭ) ООО «Челябинское управление энерготрейдинга» ПС 110/6 кВ «Никелевая»

Назначение средства измерений

Система автоматизированная информационно-измерительная коммерческого учета электроэнергии (АИИС КУЭ) ООО «Челябинское управление энерготрейдинга» ПС 110/6 кВ «Никелевая» (далее – АИИС КУЭ) предназначена для измерений активной и реактивной электроэнергии, потребленной за установленные интервалы времени отдельными технологическими объектами, сбора, обработки, хранения и передачи полученной информации.

Описание средства измерений

АИИС КУЭ представляет собой многоуровневую систему с централизованным управлением и распределенной функцией измерения.

АИИС КУЭ решает следующие задачи:

- автоматические измерения 30-минутных приращений активной и реактивной электроэнергии, средне интервальной мощности;
- периодический (1 раз в полчаса, час, сутки) и/или по запросу автоматический сбор привязанных к единому календарному времени состояния средств измерений и результатов измерений приращений электроэнергии с заданной дискретностью учета (30 мин);
- автоматическое сохранение результатов измерений в специализированной базе данных, отвечающей требованию повышенной защищенности от потери информации (резервирование баз данных) и от несанкционированного доступа;
- предоставление по запросу контрольного доступа к результатам измерений, данных о состоянии объектов и средств измерений со стороны сервера организаций—участников оптового рынка электроэнергии;
- обеспечение защиты оборудования, программного обеспечения и хранящихся в АИИС КУЭ данных от несанкционированного доступа на физическом и программном уровне (установка пломб, паролей и т.п.);
- диагностика и мониторинг функционирования технических и программных средств АИИС КУЭ;
 - конфигурирование и настройка параметров АИИС КУЭ;
- автоматическое ведение системы единого времени в АИИС КУЭ (коррекция времени).

АИИС КУЭ включает в себя следующие уровни:

1-й уровень – измерительные трансформаторы тока (ТТ) класса точности 0,5 и 0,5 по ГОСТ 7746-2001, измерительные трансформаторы напряжения (ТН) класса точности 0,2 и 0,5 по ГОСТ 1983-2001, счетчики электроэнергии класса точности 0,5 и 0,2 по ГОСТ Р 52323-2005 для активной электроэнергии и 0,5 и 1,0 по ГОСТ Р 52425-2005 для реактивной электроэнергии, указанных в таблице 2 (5 точек измерений);

2-й уровень – информационно-вычислительный комплекс электроустановки (ИВКЭ), включающий в себя устройство сбора и передачи данных (УСПД) на базе контроллера многофункционального ARIS MT700, каналообразующую аппаратуру и технические средства обеспечения электропитания;

3-й уровень — информационно-вычислительный комплекс (ИВК), включающий в себя сервер АИИС КУЭ, автоматизированные рабочие места персонала (АРМ), программное обеспечение (ПО) «Энергосфера», коммуникационное оборудование, технические средства

приема-передачи данных (каналообразующая аппаратура) и технические средства обеспечения электропитания.

Первичные токи и напряжения трансформируются измерительными трансформаторами в аналоговые сигналы низкого уровня, которые по проводным линиям связи поступают в счетчик электрической энергии. В счетчике мгновенные значения аналоговых сигналов преобразуются в цифровой сигнал. По мгновенным значениям силы электрического тока и напряжения в микропроцессоре счетчика вычисляются мгновенные значения активной и полной мощности, которые усредняются за период 0,02 с. Средняя за период реактивная мощность вычисляется по средним за период значениям активной и полной мошности.

Измерительная информация на выходе счетчика без учета коэффициента трансформации:

- активная и реактивная электрическая энергия, как интеграл по времени от средней за период 0,02 с активной и реактивной мощности, соответственно, вычисляемая для интервалов времени 30 мин;
- средняя на интервале времени 30 мин активная (реактивная) электрическая мощность.

Цифровой сигнал с выходов счетчиков по проводным линиям связи поступает на входы УСПД, где осуществляется хранение измерительной информации, ее накопление и передача накопленных данных по проводной линии связи на третий уровень системы (сервер АИИС КУЭ).

На верхнем – третьем уровне системы выполняется вычисление электроэнергии и мощности с учетом коэффициентов трансформации ТТ и ТН, формирование и хранение поступающей информации, оформление справочных и отчетных документов. ИВК обеспечивает автоматизированный сбор и долгосрочное хранение результатов измерений, информации о состоянии средств измерений, расчет потерь электроэнергии от точки измерений до точки поставки, вычисление дополнительных параметров, подготовку справочных и отчетных документов. Передача информации в организации—участники оптового рынка электроэнергии осуществляется от сервера БД, через сеть интернет в виде сообщений электронной почты.

АИИС КУЭ имеет систему обеспечения единого времени (СОЕВ). СОЕВ уровней ИИК и ИВКЭ организована на базе приёмника точного времени ГЛОНАСС/GPS, встроенного в УСПД. Устройство синхронизации времени обеспечивает автоматическую коррекцию часов УСПД. Время УСПД синхронизировано с временем приемника, сличение ежесекундное, погрешность синхронизации не более $\pm 1\,$ мс. Часы счетчиков синхронизируются от часов УСПД с периодичностью 1 раз в сутки, коррекция часов счетчиков проводится при расхождении часов счетчика и УСПД более чем на $\pm 2\,$ с. СОЕВ уровня ИВК организована на базе устройства синхронизации времени типа УСВ-2, которое производит измерение времени и даты по сигналам спутников глобальной системы позиционирования (ГЛОНАСС/GPS). Погрешность часов УСВ-2 не более $\pm 10\,$ мкс. Погрешность часов компонентов АИИС КУЭ не превышает $\pm 5\,$ с.

Программное обеспечение

В АИИС КУЭ, используется комплекс программно-технический измерительный (ПТК) «ЭКОМ», Госреестр № 19542-05, представляющий собой совокупность технических устройств (аппаратной части ПТК) и программного комплекса (ПК) «Энергосфера» в состав которого входит специализированное ПО, идентификационные данные которого указаны в таблице 1. ПК «Энергосфера» обеспечивает защиту программного обеспечения и измерительной информации паролями в соответствии с правами доступа. Средством защиты данных, передаваемых из УСПД ИВКЭ в ИВК по интерфейсу Ethernet, является кодирование данных, обеспечиваемое программными средствами ПК «Энергосфера».

Уровень защиты ПО от непреднамеренных и преднамеренных изменений – высокий (в соответствии с Р 50.2.077-2014). Оценка влияния ПО на метрологические характеристики

Таблица 1- Идентификационные данные программного обеспечения

Идентификационные данные (признаки)	Значение		
идентификационные данные (признаки)	«ПК Энергосфера»		
Идентификационное наименование ПО	pso_metr.dll		
Номер версии (идентификационный номер) ПО	1.1.1.1		
Цифровой идентификатор ПО	cbeb6f6ca69318bed976e08a2bb7814b		
Алгоритм вычисления цифрового идентификатора	MD5		

Метрологические и технические характеристики

Таблица 2 - Состав измерительных каналов АИИС КУЭ

Наименование объекта и номер точки измерений по однолинейной схеме		Состав ИК			энергии	Метрол ские ха ристин	практе-	
		TT	ТН	Счетчик	УСПД/ Сервер	Вид электроэнергии	Основная по-	Погрешность в рабочих условиях, %
1	ГПП-110/6 кВ «Никелевая», Ввод 6кВ Т-1	ТЛШ-10 2000/5 Кл.т. 0,5	НТМИ-6- 66 6000/√3/ 100/√3 Кл.т. 0,5	ПСЧ-4ТМ. 05МК.00 Кл.т. 0,5S/1,0	8u	Актив-		
2	ГПП-110/6 кВ «Никелевая», Ввод 6кВ Т-2	ТЛШ-10 2000/5 Кл.т. 0,5	НТМИ-6-66 6000/√3/ 100/√3 Кл.т. 0,5	ПСЧ-4ТМ. 05МК.00 Кл.т. 0,5S/1,0	ная 90 Реа	ная, Реак- тивная	± 1,1 ± 3,2	± 2,7 ± 5,5
3	ГПП-110/6 кВ «Никелевая», ТСН-1	ТПЛ-10 15/5 Кл.т. 0,5	НТМИ-6-66 6000/√3/ 100/√3 Кл.т. 0,5	ПСЧ-4ТМ. 05МК.00 Кл.т. 0,5S/1,0				
4	ГПП-110/6 кВ «Никелевая», ТСН-2	ТПЛ-10 15/5 Кл.т. 0,5	HTMИ-6-66 6000/√3/ 100/√3 Кл.т. 0,5	СЭТ- 4ТМ.03М Кл.т. 0,2S/0,5	RIS MT700	Актив- ная,	± 1,0	± 2,6
5	ГПП-110/6 кВ «Никелевая», ф. 6кВ «Подгорнич-ный»	ТПЛ-10 150/5 Кл.т. 0,5	НТМИ-6-66 6000/√3/ 100/√3 Кл.т. 0,5	СЭТ- 4ТМ.03М Кл.т. 0,2S/0,5	[A	Реак- тивная	± 2,9	± 4,6

Примечания:

- 1) характеристики погрешности ИК даны для измерений электроэнергии и средней мощности (получасовая);
- 2) в качестве характеристик относительной погрешности указаны границы интервала, соответствующие вероятности 0,95;
 - 3) нормальные условия:
 - параметры сети: напряжение: от 0,98 Uном до 1,02 Uном; ток: от 1,0 Іном до

1,2 Іном, $\cos j = 0,9$ инд.;

- температура окружающей среды (20 ± 5) °C;
- 4) рабочие условия:
- параметры сети: напряжение: от 0,9 Uном до 1,1 Uном; ток: от 0,05 Іном до 1,2 Іном;
- допускаемая температура окружающей среды для измерительных трансформаторов от минус 40 до плюс 70 °C, для счетчиков от минус 40 до плюс 60 °C; для УСПД от минус 20 до плюс 50 °C; для сервера от 15 до 35 °C;
- 5) погрешность в рабочих условиях указана для тока 0.05 Іном, $\cos j = 0.8$ инд; температура окружающего воздуха в месте расположения счетчиков электроэнергии от плюс 10 до плюс 30 °C;
- 6) допускается замена измерительных трансформаторов и счетчиков на аналогичные утвержденных типов с метрологическими характеристиками не хуже, чем у перечисленных в таблице 1. Замена оформляется актом в установленном на объекте порядке. Акт хранится совместно с настоящим описанием типа как его неотъемлемая часть;
- 7) в составе измерительных каналов, перечисленных в таблице 2, применяются измерительные компоненты утвержденных типов.

Надежность применяемых в системе компонентов:

- электросчётчик СЭТ-4TM.03M среднее время наработки на отказ T=165000 ч, среднее время восстановления работоспособности (tв) не более 2 ч;
- электросчётчик ПСЧ-4ТМ.05МК.00 среднее время наработки на отказ не менее 165000 часов, среднее время восстановления работоспособности не более 2 часов;
- УСПД среднее время наработки на отказ не менее T = 88000 ч, среднее время восстановления работоспособности (tв) не более 2ч;
- сервер коэффициент готовности 0,999, среднее время восстановления работоспособности не более t = 1 ч, среднее время наработки на отказ не менее t = 160165 ч.

Надежность системных решений:

- резервирование каналов связи: информация о результатах измерений может передаваться в организации—участники оптового рынка электроэнергии организацию с помощью электронной почты и сотовой связи.

В журналах событий фиксируются факты:

- параметрирования;
- пропадания напряжения;
- коррекции времени.

Защищённость применяемых компонентов:

- механическая защита от несанкционированного доступа и пломбирование:
- электросчётчика;
- испытательной коробки;
- УСПД:
- сервера.

Защита на программном уровне информации при хранении, передаче, параметрировании:

- электросчетчика;
- УСПД;
- сервера.

Возможность коррекции времени в:

- электросчетчиках (функция автоматизирована);
- УСПД (функция автоматизирована);
- ИВК (функция автоматизирована).

Возможность сбора информации:

- о состоянии средств измерений (функция автоматизирована);

- о результатах измерений (функция автоматизирована). Шикличность:
- измерений 30 мин (функция автоматизирована);
- один раз в сутки (функция автоматизирована).

Глубина хранения информации:

- электросчетчики тридцатиминутный профиль нагрузки в двух направлениях не менее 35 суток; сохранение информации при отключении питания не менее 10 лет;
- УСПД суточные данные о тридцатиминутных приращениях электропотребления (выработки) по каждому каналу и электропотребления (выработки) за месяц по каждому каналу и по группам измерительных каналов не менее 60 суток; сохранение информации при отключении питания не менее 10 лет;
- сервер БД хранение результатов измерений, состояний средств измерений не менее 3,5 лет (функция автоматизирована).

Знак утверждения типа

наносится типографским способом на титульные листы эксплуатационной документации на АИИС КУЭ.

Комплектность средства измерений

Комплектность АИИС КУЭ указана в таблице 3.

Таблица 3 – Комплектность АИИС КУЭ

Наименование	Количество, шт.		
Трансформатор тока ТЛШ-10	6		
Трансформатор тока ТПЛ-10	9		
Трансформатор напряжения НТМИ-6-66	5		
Счетчик электроэнергии СЭТ-4ТМ.03М	2		
Счетчик электроэнергии ПСЧ-4ТМ.05МК.00	3		
УСПД ARIS MT700	1		
Сервер HP Proliant DL320e Gen8	1		
Программное обеспечение ПК «Энергосфера»	1		

В комплект поставки входит техническая документация на систему и на комплектующие средства измерений, а также методика поверки «Система автоматизированная информационно-измерительная коммерческого учета электроэнергии (АИИС КУЭ) ООО «Челябинское управление энерготрейдинга» ПС 110/6 кВ «Никелевая». Измерительные каналы. Методика поверки».

Поверка

осуществляется по документу МП 61427-15 «Система автоматизированная информационно-измерительная коммерческого учета электроэнергии (АИИС КУЭ) ООО «Челябинское управление энерготрейдинга» ПС 110/6 кВ «Никелевая». Измерительные каналы. Методика поверки», утвержденному Φ ГУП «ВНИИМС» в июне 2015г.

Средства поверки - по НД на измерительные компоненты:

- трансформаторы тока по ГОСТ 8.217-2003;
- трансформаторы напряжения по МИ 2845-2003, МИ 2925-2005 и/или по ГОСТ 8.216-88:
- счетчики СЭТ-4ТМ.03М по документу «Счетчики электрической энергии многофункциональные СЭТ-4ТМ.03М, СЭТ-4ТМ.02М. Руководство по эксплуатации. Часть 2. Методика поверки» ИЛГШ.411152.145РЭ1, утвержденному руководителем ГЦИ СИ ФБУ «Нижегородский ЦСМ» «04» мая 2012 г.;

- счетчик ПСЧ-4ТМ.05МК –по документу «Счетчик электрической энергии многофункциональный ПСЧ-4ТМ.05МК. Руководство по эксплуатации. Часть2. Методика поверки» ИЛГШ.411152.167РЭ1, утвержденному руководителем ГЦИ СИ ФГУ «Нижегородский ЦСМ» в марте 2011г.;;
- контроллеры многофункциональные ARIS MT700 по документу ПБКМ.424359.003 МП «Контроллеры многофункциональные ARIS MT700. Методика поверки», утвержденному ГЦИ СИ ФГУП «ВНИИМС» в декабре 2012г;
 - радиочасы МИР РЧ-01 регистрационный № 27008-04.

Сведения о методиках (методах) измерений

Метод измерений приведен в формуляре 55181848.422222.240.1 ФО на систему автоматизированную информационно—измерительную коммерческого учета электроэнергии (АИИС КУЭ) ООО «Челябинское управление энерготрейдинга» ПС 110/6 кВ «Никелевая».

Нормативные и технические документы, устанавливающие требования к системе автоматизированной информационно-измерительной коммерческого учета электроэнергии (АИИС КУЭ) ООО «Челябинское управление энерготрейдинга» ПС 110/6 кВ «Никелевая»

ГОСТ 1983-2001	«Трансформаторы напряжения. Общие технические условия».				
ГОСТ 7746-2001	«Трансформаторы тока. Общие технические условия».				
ГОСТ 34.601-90	«Информационная технология. Комплекс стандартов на автоматизи-				
	рованные системы. Автоматизированные системы. Стадии создания».				
ГОСТ 22261-94	Средства измерений электрических и магнитных величин. Общие				
	технические условия.				
ΓΟCT P 8.596-2002	ГСИ. Метрологическое обеспечение измерительных систем. Основ-				
	ные положения.				

Изготовитель

ООО «Прософт-Системы»

620062 г. Екатеринбург, пр. Ленина д. 95, кв.16,

ИНН 6660149600,

Телефон: (343) 356-51-11, Факс: (343) 310-01-06,

Электронная почта: info@prosoftsystems.ru

Испытательный центр

Федеральное государственное унитарное предприятие «Всероссийский научноисследовательский институт метрологической службы» (ФГУП «ВНИИМС»)

Адрес: 119361, Москва, ул. Озерная, д.46 Тел./факс: (495) 437 55 77 / 437 56 66; E-mail: office@vniims.ru, www.vniims.ru

Аттестат аккредитации ФГУП «ВНИИМС» по проведению испытаний средств измерений в целях утверждения типа № 30004-13 от 26.07.2013 г.

Заместитель Руководителя Федерального агентства по техническому регулированию и метрологии

С.С. Голубев

М.п. «___»____2015 г.